160 research outputs found

    Factors influencing preoperative stress response in coronary artery bypass graft patients

    Get PDF
    BACKGROUND: In many studies investigating measures to attenuate the hemodynamic and humoral stress response during induction of anaesthesia, primary attention was paid to the period of endotracheal intubation since it has been shown that even short-lasting sympathetic cardiovascular stimulation may have detrimental effects on patients with coronary artery disease. The aim of this analysis was, however, to identify the influencing factors on high catecholamine levels before induction of anaesthesia. METHODS: Various potential risk factors that could impact the humoral stress response before induction of anaesthesia were recorded in 84 males undergoing coronary aortic bypass surgery, and were entered into a stepwise linear regression analysis. The plasma level of norepinephrine measured immediately after radial artery canulation was chosen as a surrogate marker for the humoral stress response, and it was used as the dependent variable in the regression model. Accordingly, the mean arterial blood pressure, heart rate and the calculated pressure-rate product were taken as parameters of the hemodynamic situation. RESULTS: Stepwise regression analysis revealed that the oral administration of low-dose clonidine (mean dose 1.75 μg·kg(-1)) on the morning of surgery was the only significant predictor (p = 0.004) of the high variation in preoperative norepinephrine plasma levels. This intervention decreased norepinephrine levels by more than 40% compared to no clonidine administration, from 1.26 to 0.75 nmol·l(-1). There was no evidence for dose-responsiveness of clonidine. All other potential predictors were removed from the model as insignificant (p > 0.05). The use of beta-blocker, ace-inhibitors, ejection fraction, and body mass index were significant determinants for the hemodynamic situation (heart rate, mean arterial pressure, pressure rate product) of the patient during the pre-induction period. CONCLUSION: The oral administration of clonidine is the only significant predictor for the observed variation of norepinephrine levels during the preoperative period. Lack of significant dose responsiveness suggests that even a low dose of the drug can attenuate the preoperative stress response and thus is recommended in cardiovascular high risk patients

    Ovotoxic Effects of Galactose Involve Attenuation of Follicle-Stimulating Hormone Bioactivity and Up-Regulation of Granulosa Cell p53 Expression

    Get PDF
    Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity, galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis in vitro; however co-treatment with either FSH or estradiol significantly prevented galactose-induced granulosa cell p53 expression. We conclude that the ovotoxic effects of galactose involves attenuation of FSH bioactivity that renders the ovary resistant to gonadotrophins leading to increased granulosa cell expression of p53 and follicular atresia

    Crystal Structure of Legionella DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems

    Get PDF
    The Dot/Icm type IVB secretion system (T4BSS) is a pivotal determinant of Legionella pneumophila pathogenesis. L. pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer membranes is thought to be made up of at least five proteins: DotC, DotD, DotF, DotG and DotH. DotH is the outer membrane protein; its targeting depends on lipoproteins DotC and DotD. However, the core complex structure and assembly mechanism are still unknown. Here, we report the crystal structure of DotD at 2.0 Å resolution. The structure of DotD is distinct from that of VirB7, the outer membrane lipoprotein of the type IVA secretion system. In contrast, the C-terminal domain of DotD is remarkably similar to the N-terminal subdomain of secretins, the integral outer membrane proteins that form substrate conduits for the type II and the type III secretion systems (T2SS and T3SS). A short β-segment in the otherwise disordered N-terminal region, located on the hydrophobic cleft of the C-terminal domain, is essential for outer membrane targeting of DotH and Dot/Icm T4BSS core complex formation. These findings uncover an intriguing link between T4BSS and T2SS/T3SS

    Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector

    Get PDF
    Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of “metaeffector,” a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein

    Burden of anemia in patients with osteoarthritis and rheumatoid arthritis in French secondary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthritic disorders can be the cause of hospitalizations, especially among individuals 60 years and older. The objective of this study is to investigate associations between health care resource utilization in arthritis patients with and without concomitant anemia in a secondary care setting in France.</p> <p>Methods</p> <p>This retrospective cohort study utilized data on secondary care activity in 2001 from the Programme de Médicalisation des Systèmes d'Information database. Two cohorts were defined using ICD-10 codes: patients with an arthritis diagnosis with a concomitant diagnosis of anemia; and arthritis patients without anemia. Health care resource utilization for both populations was analyzed separately in public and private hospitals. Study outcomes were compared between the cohorts using standard bivariate and multivariable methods.</p> <p>Results</p> <p>There were 300,865 hospitalizations for patients with arthritis only, and 2,744 for those with concomitant anemia. Over 70% of patients with concomitant anemia were in public hospitals, compared with 53.5% of arthritis-only patients. Arthritis patients without anemia were younger than those with concomitant anemia (mean age 66.7 vs 74.6, public hospitals; 67.1 vs 72.2, private hospitals). Patients with concomitant anemia/arthritis only had a mean length of stay of 11.91 (SD 14.07)/8.04 (SD 9.93) days in public hospitals, and 10.68 (SD 10.16)/9.83 (SD 7.76) days in private hospitals. After adjusting for confounders, the mean (95% CI) additional length of stay for arthritis patients with concomitant anemia, compared with those with arthritis only, was 1.56 (1.14-1.98) days in public and 0.69 (0.22-1.16) days in private hospitals. Costs per hospitalization were €;480 (227-734) greater for arthritis patients with anemia in public hospitals, and €;30 (-113-52) less in private hospitals, than for arthritis-only patients.</p> <p>Conclusions</p> <p>Arthritis patients with concomitant anemia have a longer length of stay, undergo more procedures, and have higher hospitalization costs than nonanemic arthritis patients in public hospitals in France. In private hospitals, concomitant anemia was associated with modest increases in length of stay and number of procedures; however, this did not translate into higher costs. Such evidence of anemia-related health care utilization and costs can be considered as a proxy for the clinical significance of anemia.</p

    Meta-analysis of several gene lists for distinct types of cancer: A simple way to reveal common prognostic markers

    Get PDF
    BACKGROUND: Although prognostic biomarkers specific for particular cancers have been discovered, microarray analysis of gene expression profiles, supported by integrative analysis algorithms, helps to identify common factors in molecular oncology. Similarities of Ordered Gene Lists (SOGL) is a recently proposed approach to meta-analysis suitable for identifying features shared by two data sets. Here we extend the idea of SOGL to the detection of significant prognostic marker genes from microarrays of multiple data sets. Three data sets for leukemia and the other six for different solid tumors are used to demonstrate our method, using established statistical techniques. RESULTS: We describe a set of significantly similar ordered gene lists, representing outcome comparisons for distinct types of cancer. This kind of similarity could improve the diagnostic accuracies of individual studies when SOGL is incorporated into the support vector machine algorithm. In particular, we investigate the similarities among three ordered gene lists pertaining to mesothelioma survival, prostate recurrence and glioma survival. The similarity-driving genes are related to the outcomes of patients with lung cancer with a hazard ratio of 4.47 (p = 0.035). Many of these genes are involved in breakdown of EMC proteins regulating angiogenesis, and may be used for further research on prognostic markers and molecular targets of gene therapy for cancers. CONCLUSION: The proposed method and its application show the potential of such meta-analyses in clinical studies of gene expression profiles

    A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

    Get PDF
    Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells

    Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    Get PDF
    The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms
    corecore