55 research outputs found
Parity Violation in Neutron Capture Reactions
In the last decade, the scattering of polarized neutrons on compound nucleus
resonances proved to be a powerful experimental technique for probing nuclear
parity violation. Longitudinal analyzing powers in neutron transmission
measurements on p-wave resonances in nuclei such as La and Th
were found to be as large as 10%. Here we examine the possibilities of carrying
out a parallel program to measure asymmetries in the ) reaction on
these same compound nuclear resonances. Symmetry-violating ) studies
can also show asymmetries as large as 10%, and have the advantage over
transmission experiments of allowing parity-odd asymmetries in several
different gamma-decay branches from the same resonance. Thus, studies of parity
violation in the reaction using high efficiency germanium
detectors at the Los Alamos Lujan facility, for example, could determine the
parity-odd nucleon-nucleon matrix elements in complex nuclei with high
accuracy. Additionally, simultaneous studies of the E1 and matrix
elements invol ved in these decays could be used to help constrain the
statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur
Quantum Monte Carlo Calculations of Pion Scattering from Li
We show that the neutron and proton transition densities predicted by recent
quantum Monte Carlo calculations for A=6,7 nuclei are consistent with pion
scattering from 6Li and 7Li at energies near the Delta resonance. This has
provided a microscopic understanding of the enhancement factors for quadrople
excitations, which were needed to describe pion inelastic scattering within the
nuclear shell model of Cohen and Kurath.Comment: 10 pages, REVTeX, 3 postscript figures; added calculation of elastic
and inelastic pion scattering from 6Li at multiple energie
Parity Nonconservation in Neutron Resonances in 133Cs
Spatial parity nonconservation (PNC) has been studied in the compound-nuclear states of 134Cs by measuring the helicity dependence of the neutron total cross section. Transmission measurements on a thick 133Cs target were performed by the time-of-flight method at the Manuel Lujan Neutron Scattering Center with a longitudinally polarized neutron beam in the energy range from 5 to 400 eV. A total of 28 new p-wave resonances were found, their neutron widths determined, and the PNC longitudinal asymmetries of the resonance cross sections measured. The value obtained for the root-mean-square PNC element M=(0.06-0.02+0.25) meV in 133Cs is the smallest among all targets studied. This value corresponds to a weak spreading width Γw=(0.006-0.003+0.154)×10-7 eV
Probing the isovector transition strength of the low-lying nuclear excitations induced by inverse kinematics proton scattering
A compact approach based on the folding model is suggested for the
determination of the isoscalar and isovector transition strengths of the
low-lying () excitations induced by inelastic proton
scattering measured with exotic beams. Our analysis of the recently measured
inelastic O+p scattering data at and 43 MeV/nucleon
has given for the first time an accurate estimate of the isoscalar
and isovector deformation parameters (which cannot be determined from
the (p,p') data alone by standard methods) for 2 and excited
states in O. Quite strong isovector mixing was found in the 2
inelastic O+p scattering channel, where the strength of the isovector
form factor (prototype of the Lane potential) corresponds to a
value almost 3 times larger than and a ratio of nuclear transition
matrix elements .Comment: 5 pages, 3 figure
Demonstration of a solid deuterium source of ultra-cold neutrons
Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined
by the Fermi potential in material bottles, are playing an increasing role in
measurements of fundamental properties of the neutron. The ability to
manipulate UCN with material guides and bottles, magnetic fields, and gravity
can lead to experiments with lower systematic errors than have been obtained in
experiments with cold neutron beams. The UCN densities provided by existing
reactor sources limit these experiments. The promise of much higher densities
from solid deuterium sources has led to proposed facilities coupled to both
reactor and spallation neutron sources. In this paper we report on the
performance of a prototype spallation neutron-driven solid deuterium source.
This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three
times greater than the largest bottled UCN densities previously reported. These
results indicate that a production UCN source with substantially higher
densities should be possible
Recommended from our members
Structure of /sup 13/C studied by pion scattering near the (3,3) resonance
Good resolution (..pi../sup +/,..pi../sup +/') and (..pi../sup -/,..pi../sup -/') data were obtained for many states in /sup 13/C using the Energetic Pion Channel and Spectrometer at the Los Alamos Meson Physics Facility. Differential cross sections were measured for angles between 20/sup 0/ and 105/sup 0/ at an incident pion energy of 162 MeV for the elastic scattering as well as for states at excitation energies of 3.09, 3.68, 3.85, 7.55, 8.86, 9.5, 11.82, 16.05, 17.92, 21.37, and 21.6 MeV. Excitation functions were measured at momentum transfers of q = 1.1 h fm /sup -1/ and q = 1.4 h fm/sup -1/, for energies between 100 and 300 MeV. A sigma(..pi../sup -/)/sigma(..pi../sup +/) ratio of 9:1 was observed for the first time, indicating a pure neutron particle-hole excitation of a high spin state (J/sup ..pi../ = 9/2/sup +/). Strikingly different energy dependences were found for ..delta..S = 0 and ..delta..S = 1 transitions. Data for all states were compared with the microscopic model calculations of Lee and Kurath. Very good agreement was found between experiment and theory for the strongly excited states and the 9/2/sup +/ state at 9.5 MeV, in sharp contrast to the disagreement for weak transitions. The excitation function data and comparisons with the microscopic model calculations were used to identify the states at 16.05, 17.92, 21.37, and 21.6 MeV as either 7/2/sup +/ or 9/2/sup +/ states. The elastic scattering data were analyzed with an optical modeland the results were found to be consistent with neutron and proton distributions having equal rms radii. The optical potentials generated were used in a collective model analysis of the 3/2/sup -/ (3.68 MeV) and 5/2/sup -/ (7.55 MeV) states. The reduced transition probabilities (B(E2)) derived from the proton parts of the transition strength are in agreement with those determined from electromagnetic measurements
Recommended from our members
Proposed experiment to measure the neutron spin-electron angular correlation in polarized neutron beta decay with ultra-cold neutrons
One area in which the Standard Model can be probed is neutron beta decay. In particular, measurements of angular correlations in neutron beta decay can place constraints on the existence of right-handed currents, the presence of scalar and tensor terms in the weak interaction, and for evidence of Time Reversal Violation, which is expected from the observed violation of CP invariance in kaon decay. A measurement of A, the correlation between the neutron spin and the direction of emission of the electron in neutron decay, can be combined with the neutron lifetime to determine the fundamental vector and axial vector weak coupling constants G{sub A} and G{sub V}. The authors have presented the essential elements of their plans to carry out an A correlation measurement using the UCN source they have constructed at the Manuel Lujan Neutron Scattering Center (MLNSC). Their goal is an initial measurement with an accuracy of about 0.2% of A (which has a value of about {minus}0.114). The count rate expected in the experiment will allow a determination at this statistical accuracy level in a running time of about four months
EXCITATION OF GIANT RESONANCES IN PION INELASTIC SCATTERING
On présente les résultats obtenus récemment par diffusion inélastique de pions à l'énergie de la résonance, sur la région des résonances géantes des noyaux. Les nouveaux résultats incluent l'observation de candidats pour la résonance dipolaire avec spin-flip dans 12C et 28Si et l'observation de grandes asymétries des sections efficaces π+, π- pour la région du continuum de 208Pb.We present some recently obtained data for resonance energy inelastic pion scattering to the giant resonance region of nuclei. New results include the observation of candidates for spin-dipole resonances in 12C and 28Si, and the observation of large π+, π- cross section asymmetries for the continuum region in 208Pb
Recommended from our members
Spin excitations in pion inelastic scattering
The data on spin excitations observed in pion inelastic scattering are reviewed. A predominant feature of this process is the selectivity with which high-spin unnatural-parity states are excited. Constant-q excitation functions have proven valuable in identifying unnatural-parity states because of the unique signature of ..delta..S = 1 transitions. It has recently been shown that angular distributions measured for transitions to natural-parity states are quite different for ..delta..S = 0 and ..delta..S = 1 transitions. Pion scattering should continue to prove useful in studying the spin structure of nuclear transitions because of the sensitivity of both excitation functions and angular distributions to the spin transferred to the nucleus. In particular, pion scattering measurements may be helpful in searches for spin-mode giant resonances. In addition to the ability to distinguish transitions dominated by ..delta..S = 1, comparisons of ..pi../sup +/ and ..pi../sup -/ scattering can be used to determine the relative contributions of neutrons and protons to inelastic transitions. In each N not equal to Z nucleus studied there have been large ..pi../sup +//..pi../sup -/, asymmetries observed for some transitions to stretched states. This results in information that is not obtainable from 180/sup 0/ electron scattering
- …