42 research outputs found

    Models and metaphors: complexity theory and through-life management in the built environment

    Get PDF
    Complexity thinking may have both modelling and metaphorical applications in the through-life management of the built environment. These two distinct approaches are examined and compared. In the first instance, some of the sources of complexity in the design, construction and maintenance of the built environment are identified. The metaphorical use of complexity in management thinking and its application in the built environment are briefly examined. This is followed by an exploration of modelling techniques relevant to built environment concerns. Non-linear and complex mathematical techniques such as fuzzy logic, cellular automata and attractors, may be applicable to their analysis. Existing software tools are identified and examples of successful built environment applications of complexity modelling are given. Some issues that arise include the definition of phenomena in a mathematically usable way, the functionality of available software and the possibility of going beyond representational modelling. Further questions arising from the application of complexity thinking are discussed, including the possibilities for confusion that arise from the use of metaphor. The metaphor of a 'commentary machine' is suggested as a possible way forward and it is suggested that an appropriate linguistic analysis can in certain situations reduce perceived complexity

    The Lantern Vol. 50, No. 1, Fall 1983

    Get PDF
    • Reaching for My Dream • All Hail • Appreciation • Egotism • Me (Dedicated to...) • Butterfly • Balloon and Bird • Never Again • Mother • The Deaf Ears • Healing • Distress • Silent Death • Whose Reality Is It Anyway? • To Helen • Luna Llena y Soledad • Saved • Jenny • Slope • A Poem in C Minor • A Birth of Proficiency • The Traveling Man • Competing With the Sea • To R. • The Child • And Besides • An Actress\u27 Demise • A Loving Tribute to Francis • Rapunzel • Memorieshttps://digitalcommons.ursinus.edu/lantern/1123/thumbnail.jp

    Reversible changes in Ca2+-activation properties of rat skeletal muscle exposed to elevated physiological temperatures

    No full text
    Exposure of relaxed rat extensor digitorum longus (EDL; predominantly fast-twitch) muscle to temperatures in the upper physiological range for mammalian skeletal muscle (43-46 °C) led to reversible alterations of the contractile activation properties. These properties were studied using the mechanically skinned fibre preparation activated in Ca2+-buffered solutions. The maximum Ca2+-activated force (maximum force per cross-sectional area) and the steepness of force-pCa (-log10[Ca2+]) curves as measured by the Hill coefficient (nH) reversibly decreased by factors of 8 and 2.5, respectively, when the EDL muscle was treated at 43 °C for 30 min and 5 and 2.8, respectively, with treatment at 46 °C for 5 min. Treatment at 47 °C for 5 min produced an even more marked depression in maximum specific force, which fully recovered after treatment, and in the Hill coefficient, which did not recover after treatment. After all temperature treatments there was no change in the level of [Ca2+] at which 50 % maximum force was generated. The temperature-induced depression in force production and steepness of the force-pCa curves were shown to be associated with superoxide (O2−) production in muscle (apparent rate of O2− production at room temperature, 0.055 ± 0.008 nmol min−1 (g wet weight)−1; and following treatment to 46 °C for 5 min, 1.8 ± 0.2 nmol min−1 (g wet weight)−1) because 20 mm Tiron, a membrane-permeant O2− scavenger, was able to markedly suppress the net rate of O2− production and prevent any temperature-induced depression of contractile parameters. The temperature-induced depression in force production of the contractile apparatus could be reversed either by allowing the intact muscle to recover for 3-4 h at room temperature or by treatment of the skinned fibre preparation with dithiothreitol (a potent reducing agent) in the relaxing solution. These results demonstrate that mammalian skeletal muscle has the ability to uncouple force production reversibly from the activator Ca2+ as the temperature increases in the upper physiological range through an increase in O2− production
    corecore