339 research outputs found

    Transport equations for the inflationary trispectrum

    Get PDF
    We use transport techniques to calculate the trispectrum produced in multiple-field inflationary models with canonical kinetic terms. Our method allows the time evolution of the local trispectrum parameters, tauNL and gNL, to be tracked throughout the inflationary phase. We illustrate our approach using examples. We give a simplified method to calculate the superhorizon part of the relation between field fluctuations on spatially flat hypersurfaces and the curvature perturbation on uniform density slices, and obtain its third-order part for the first time. We clarify how the 'backwards' formalism of Yokoyama et al. relates to our analysis and other recent work. We supply explicit formulae which enable each inflationary observable to be computed in any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published in JCAP; typo fixed in Eq. (54

    Infrared effects in inflationary correlation functions

    Full text link
    In this article, I briefly review the status of infrared effects which occur when using inflationary models to calculate initial conditions for a subsequent hot, dense plasma phase. Three types of divergence have been identified in the literature: secular, "time-dependent" logarithms, which grow with time spent outside the horizon; "box-cutoff" logarithms, which encode a dependence on the infrared cutoff when calculating in a finite-sized box; and "quantum" logarithms, which depend on the ratio of a scale characterizing new physics to the scale of whatever process is under consideration, and whose interpretation is the same as conventional field theory. I review the calculations in which these divergences appear, and discuss the methods which have been developed to deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on nonlinear and nongaussian perturbation theory. Some improvements compared to version which will appear in CQG, especially in Sec. 2.3. 30 pages + references

    Gravity and non-gravity mediated couplings in multiple-field inflation

    Get PDF
    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.Comment: 14 pages, 3 figures, invited review for CQG issue on non-linear cosmolog

    Inflationary perturbation theory is geometrical optics in phase space

    Full text link
    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "delta N" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, zeta, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.Comment: 22 pages, plus bibliography and appendix. v2: minor changes, matches version published in JCA

    Issues Concerning Loop Corrections to the Primordial Power Spectra

    Full text link
    We expound ten principles in an attempt to clarify the debate over infrared loop corrections to the primordial scalar and tensor power spectra from inflation. Among other things we note that existing proposals for nonlinear extensions of the scalar fluctuation field ζ\zeta introduce new ultraviolet divergences which no one understands how to renormalize. Loop corrections and higher correlators of these putative observables would also be enhanced by inverse powers of the slow roll parameter ϵ\epsilon. We propose an extension which should be better behaved.Comment: 36 pages, uses LaTeX2e, version 3 revised for publication with a much expanded section 4, proving that our proposed extension of the zeta-zeta correlator absorbs the one loop infrared divergences from graviton

    One-loop corrections to the curvature perturbation from inflation

    Full text link
    An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes version published in JCAP. Some corrections and refinements to the discussion and conclusions. v3: Corrects misidentification of quantum correction with an IR effect. Improvements to the discussio

    Non-gaussianity of inflationary field perturbations from the field equation

    Full text link
    We calculate the tree-level bispectrum of the inflaton field perturbation directly from the field equations, and construct the corresponding f_NL parameter. Our results agree with previous ones derived from the Lagrangian. We argue that quantum theory should only be used to calculate the correlators when they first become classical a few Hubble times after horizon exit, the classical evolution taking over thereafter.Comment: 16 pages, uses iopart.sty. v2: replaced with version accepted by JCAP; minor changes of wording only. v3: supersedes version published by journal; typo fixed in Eq. (20) and updated references. v4: sign errors in Eqs. (32) and (38) correcte

    On the Physical Significance of Infra-red Corrections to Inflationary Observables

    Get PDF
    Inflationary observables, like the power spectrum, computed at one- and higher-order loop level seem to be plagued by large infra-red corrections. In this short note, we point out that these large infra-red corrections appear only in quantities which are not directly observable. This is in agreement with general expectations concerning infra-red effects.Comment: 11 pages; LateX file; 5 figures. Some coefficients in Eq.(A6) corrected; References adde

    Cosmic No Hair for Braneworlds with a Bulk Dilaton Field

    Get PDF
    Braneworld cosmology supported by a bulk scalar field with an exponential potential is developed. A general class of separable backgrounds for both single and two-brane systems is derived, where the bulk metric components are given by products of world-volume and bulk coordinates and the world-volumes represent any anisotropic and inhomogeneous solution to an effective four-dimensional Brans-Dicke theory of gravity. We deduce a cosmic no hair theorem for all ever expanding, spatially homogeneous Bianchi world-volumes and find that the spatially flat and isotropic inflationary scaling solution represents a late-time attractor when the bulk potential is sufficiently flat. The dependence of this result on the separable nature of the bulk metric is investigated by applying the techniques of Hamilton-Jacobi theory to five-dimensional Einstein gravity. We employ the spatial gradient expansion method to determine the asymptotic form of the bulk metric up to third-order in spatial gradients. It is found that the condition for the separable form of the metric to represent the attractor of the system is precisely the same as that for the four-dimensional world-volume to isotropize. We also derive the fourth-order contribution to the Hamilton-Jacobi generating functional. Finally, we conclude by placing our results within the context of the holographic approach to braneworld cosmology.Comment: 13 pages, uses RevTeX

    Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity

    Full text link
    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars \phi are naturally coupled to gauge fields through c \phi F \tilde{F}. In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the "vacuum" perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling, c, of the pseudo-scalar inflaton to any gauge field must be smaller than about 10^{2} M_p^{-1}.Comment: 45 pages, 7 figure
    • …
    corecore