369 research outputs found

    Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model

    Full text link
    We investigate the primordial trispectra of the general multifield DBI inflationary model. In contrast with the single field model, the entropic modes can source the curvature perturbations on the super horizon scales, so we calculate the contributions from the interaction of four entropic modes mediating one adiabatic mode to the trispectra, at the large transfer limit (TRS≫1T_{RS}\gg1). We obtained the general form of the 4-point correlation functions, plotted the shape diagrams in two specific momenta configurations, "equilateral configuration" and "specialized configuration". Our figures showed that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA

    Cosmological diagrammatic rules

    Full text link
    A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.Comment: 7 pages, 3 figure

    A parton picture of de Sitter space during slow-roll inflation

    Full text link
    It is well-known that expectation values in de Sitter space are afflicted by infra-red divergences. Long ago, Starobinsky proposed that infra-red effects in de Sitter space could be accommodated by evolving the long-wavelength part of the field according to the classical field equations plus a stochastic source term. I argue that--when quantum-mechanical loop corrections are taken into account--the separate-universe picture of superhorizon evolution in de Sitter space is equivalent, in a certain leading-logarithm approximation, to Starobinsky's stochastic approach. In particular, the time evolution of a box of de Sitter space can be understood in exact analogy with the DGLAP evolution of partons within a hadron, which describes a slow logarithmic evolution in the distribution of the hadron's constituent partons with the energy scale at which they are probed.Comment: 36 pages; uses iopart.cls and feynmp.sty. v2: Minor typos corrected. Matches version published in JCA

    Diagrammatic approach to non-Gaussianity from inflation

    Get PDF
    We present Feynman type diagrams for calculating the n-point function of the primordial curvature perturbation in terms of scalar field perturbations during inflation. The diagrams can be used to evaluate the corresponding terms in the n-point function at tree level or any required loop level. Rules are presented for drawing the diagrams and writing down the corresponding terms in real space and Fourier space. We show that vertices can be renormalised to automatically account for diagrams with dressed vertices. We apply these rules to calculate the primordial power spectrum up to two loops, the bispectrum including loop corrections, and the trispectrum.Comment: 17 pages, 13 figures. v2: Comments and references added, v3: Introduction expanded, subsection on evaluating loop diagrams added, minor errors corrected, references adde

    Infrared effects in inflationary correlation functions

    Full text link
    In this article, I briefly review the status of infrared effects which occur when using inflationary models to calculate initial conditions for a subsequent hot, dense plasma phase. Three types of divergence have been identified in the literature: secular, "time-dependent" logarithms, which grow with time spent outside the horizon; "box-cutoff" logarithms, which encode a dependence on the infrared cutoff when calculating in a finite-sized box; and "quantum" logarithms, which depend on the ratio of a scale characterizing new physics to the scale of whatever process is under consideration, and whose interpretation is the same as conventional field theory. I review the calculations in which these divergences appear, and discuss the methods which have been developed to deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on nonlinear and nongaussian perturbation theory. Some improvements compared to version which will appear in CQG, especially in Sec. 2.3. 30 pages + references

    Non-gaussianity of inflationary field perturbations from the field equation

    Full text link
    We calculate the tree-level bispectrum of the inflaton field perturbation directly from the field equations, and construct the corresponding f_NL parameter. Our results agree with previous ones derived from the Lagrangian. We argue that quantum theory should only be used to calculate the correlators when they first become classical a few Hubble times after horizon exit, the classical evolution taking over thereafter.Comment: 16 pages, uses iopart.sty. v2: replaced with version accepted by JCAP; minor changes of wording only. v3: supersedes version published by journal; typo fixed in Eq. (20) and updated references. v4: sign errors in Eqs. (32) and (38) correcte

    The inflationary trispectrum

    Get PDF
    We calculate the trispectrum of the primordial curvature perturbation generated by an epoch of slow-roll inflation in the early universe, and demonstrate that the non-gaussian signature imprinted at horizon crossing is unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar ratio. Therefore any primordial non-gaussianity observed in future microwave background experiments is likely to have been synthesized by gravitational effects on superhorizon scales. We discuss the application of Maldacena's consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2, replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and Eq. (48) corrected. Some minor notational change

    Non-linear inflationary perturbations

    Full text link
    We present a method by which cosmological perturbations can be quantitatively studied in single and multi-field inflationary models beyond linear perturbation theory. A non-linear generalization of the gauge-invariant Sasaki-Mukhanov variables is used in a long-wavelength approximation. These generalized variables remain invariant under time slicing changes on long wavelengths. The equations they obey are relatively simple and can be formulated for a number of time slicing choices. Initial conditions are set after horizon crossing and the subsequent evolution is fully non-linear. We briefly discuss how these methods can be implemented numerically in the study of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio

    One-loop corrections to the curvature perturbation from inflation

    Full text link
    An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes version published in JCAP. Some corrections and refinements to the discussion and conclusions. v3: Corrects misidentification of quantum correction with an IR effect. Improvements to the discussio

    The ISS as a Testbed for Future Large Astronomical Observatories: The OpTIIX Demonstration Program

    Get PDF
    Future large (diameters in excess of approx. 10 m) astronomical observatories in space will need to employ advanced technologies if they are to be affordable. Many of these technologies are ready to be validated on orbit and the International Space Station (ISS) provides a suitable platform for such demonstrations. These technologies include low-cost, low-density, highly deformable mirror segments, coupled with advanced sensing and control methods. In addition, the ISS offers available telerobotic assembly techniques to build an optical testbed that embodies this new cost-effective approach to assemble and achieve diffraction-limited optical performance for very large space telescopes. Given the importance that NASA attaches to the recommendations of the National Academy of Sciences "Decadal Survey" process, essential capabilities and technologies will be demonstrated well in advance of the next Survey, which commences in 2019. To achieve this objective, the Jet Propulsion Laboratory (JPL), NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and the Space Telescope Science Institute (STScI) are carrying out a Phase A/B study of the Optical Testbed and Integration on ISS eXperiment (OpTIIX). The overarching goal is to demonstrate well before the end of this decade key capabilities intended to enable very large optical systems in the decade of the 2020s. Such a demonstration will retire technical risk in the assembly, alignment, calibration, and operation of future space observatories. The OpTIIX system, as currently designed, is a six-hexagon element, segmented visual-wavelength telescope with an edge-to-edge aperture of 1.4 m, operating at its diffraction limit
    • …
    corecore