7 research outputs found

    Population level survival of patients with chronic myelocytic leukemia in Germany compared to the US in the early 21st century

    Get PDF
    INTRODUCTION: The advent of tyrosine kinase inhibitors has produced 5-year survival of 90 + % for chronic myelocytic leukemia (CML) patients in clinical trials. However, population level survival has been lower, especially in older patients. Here, we examine survival of patients with CML in Germany and compare it to survival of patients in the United States (US). METHODS: Data were extracted from the Surveillance, Epidemiology, and End Results database in the US and 11 cancer registries in Germany. Patients 15–69 years old diagnosed with CML were included in the analysis. Period analysis for 2002–2006 was used to provide the most up-to-date possible estimates of five-year relative survival. RESULTS: Five-year relative survival was 68.7% overall in Germany and 72.7% in the US. Survival was higher in the US for all age groups except for ages 15–39 years, but the difference was only statistically significant for ages 50–59 years (at 67.5% vs 77.7% in Germany and the US, respectively). Survival decreased with age, ranging from 83.1% and 81.9%, respectively, in Germany and the US for patients 15–39 years old to 54.2% and 54.5%, respectively, in patients 65–69 years old. Survival increased between 2002 and 2006 by 12.0% points in Germany and 17.1% points in the US. CONCLUSIONS: Five-year survival estimates were higher in the US than in Germany overall, but the difference was only significant for ages 50–59 years. Survival did not equal that seen in clinical trials for either country, but strong improvement in survival was seen between 2002 and 2006

    Optical endomicroscopy and the road to real-time, in vivo pathology: present and future

    Get PDF
    <p>Abstract</p> <p>Epithelial cancers account for substantial mortality and are an important public health concern. With the need for earlier detection and treatment of these malignancies, the ability to accurately detect precancerous lesions has an increasingly important role in controlling cancer incidence and mortality. New optical technologies are capable of identifying early pathology in tissues or organs in which cancer is known to develop through stages of dysplasia, including the esophagus, colon, pancreas, liver, bladder, and cervix. These diagnostic imaging advances, together as a field known as optical endomicroscopy, are based on confocal microscopy, spectroscopy-based imaging, and optical coherence tomography (OCT), and function as “optical biopsies,” enabling tissue pathology to be imaged in situ and in real time without the need to excise and process specimens as in conventional biopsy and histopathology. Optical biopsy techniques can acquire high-resolution, cross-sectional images of tissue structure on the micron scale through the use of endoscopes, catheters, laparoscopes, and needles. Since the inception of these technologies, dramatic technological advances in accuracy, speed, and functionality have been realized. The current paradigm of optical biopsy, or single-area, point-based images, is slowly shifting to more comprehensive microscopy of larger tracts of mucosa. With the development of Fourier-domain OCT, also known as optical frequency domain imaging or, more recently, volumetric laser endomicroscopy, comprehensive surveillance of the entire distal esophagus is now achievable at speeds that were not possible with conventional OCT technologies. Optical diagnostic technologies are emerging as clinically useful tools with the potential to set a new standard for real-time diagnosis. New imaging techniques enable visualization of high-resolution, cross-sectional images and offer the opportunity to guide biopsy, allowing maximal diagnostic yields and appropriate staging without the limitations and risks inherent with current random biopsy protocols. However, the ability of these techniques to achieve widespread adoption in clinical practice depends on future research designed to improve accuracy and allow real-time data transmission and storage, thereby linking pathology to the treating physician. These imaging advances are expected to eventually offer a see-and-treat paradigm, leading to improved patient care and potential cost reduction.</p> <p>Virtual Slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/5372548637202968</url></p

    Psychosomatik des Herzinfarkts

    No full text

    Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: A post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology

    No full text
    corecore