2,431 research outputs found
Elasticity of entangled polymer loops: Olympic gels
In this note we present a scaling theory for the elasticity of olympic gels,
i.e., gels where the elasticity is a consequence of topology only. It is shown
that two deformation regimes exist. The first is the non affine deformation
regime where the free energy scales linear with the deformation. In the large
(affine) deformation regime the free energy is shown to scale as where is the deformation ratio. Thus a highly non
Hookian stress - strain relation is predicted.Comment: latex, no figures, accepted in PRE Rapid Communicatio
SuperB: a linear high-luminosity B Factory
This paper is based on the outcome of the activity that has taken place
during the recent workshop on "SuperB in Italy" held in Frascati on November
11-12, 2005. The workshop was opened by a theoretical introduction of Marco
Ciuchini and was structured in two working groups. One focused on the machine
and the other on the detector and experimental issues.
The present status on CP is mainly based on the results achieved by BaBar and
Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of
the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e-
asymmetric B Factories operating at the center of mass energy corresponding to
the mass of the Y(4s). With the two B Factories taking data, the Unitarity
Triangle is now beginning to be overconstrained by improving the measurements
of the sides and now also of the angles alpha, and gamma. We are also in
presence of the very intriguing results about the measurements of sin(2 beta)
in the time dependent analysis of decay channels via penguin loops, where b -->
s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as
charm and ISR physics are important parts of the scientific program of a SuperB
Factory. The physics case together with possible scenarios for the high
luminosity SuperB Factory based on the concepts of the Linear Collider and the
related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor
Study of damage control systems for space station
Damage control systems for detecting and locating overboard and onboard leak and damage modes on space station
MFN2 mutations cause compensatory mitochondrial DNA proliferation.
MFN2 and OPA1 genes encode two dynamin-like GTPase proteins involved in the fusion of the mitochondrial membrane. They have been associated with CharcotâMarieâTooth disease type 2A and autosomal dominant optic atrophy, respectively. We report a large family with optic atrophy beginning in early childhood, associated with axonal neuropathy and mitochondrial myopathy in adult life. The clinical presentation looks like the autosomal dominant optic atrophy âplusâ phenotype linked to OPA1 mutations but is associated with a novel MFN2 missense mutation (c.629A>T, p.D210V). Multiple mitochondrial DNA deletions were found in skeletal muscle and this observation makes MFN2 a novel gene associated with âmitochondrial DNA breakageâ syndrome. Contrary to previous studies in patients with CharcotâMarieâTooth disease type 2A, fibroblasts carrying the MFN2 mutation present with a respiratory chain deficiency, a fragmentation of the mitochondrial network and a significant reduction of MFN2 protein expression. Furthermore, we show for the first time that impaired mitochondrial fusion is responsible for a deficiency to repair stress-induced mitochondrial DNA damage. It is likely that defect in mitochondrial DNA repair is due to variability in repair protein content across the mitochondrial population and is at least partially responsible for mitochondrial DNA instability. <br/
MFN2 mutations cause compensatory mitochondrial DNA proliferation.
MFN2 and OPA1 genes encode two dynamin-like GTPase proteins involved in the fusion of the mitochondrial membrane. They have been associated with CharcotâMarieâTooth disease type 2A and autosomal dominant optic atrophy, respectively. We report a large family with optic atrophy beginning in early childhood, associated with axonal neuropathy and mitochondrial myopathy in adult life. The clinical presentation looks like the autosomal dominant optic atrophy âplusâ phenotype linked to OPA1 mutations but is associated with a novel MFN2 missense mutation (c.629A>T, p.D210V). Multiple mitochondrial DNA deletions were found in skeletal muscle and this observation makes MFN2 a novel gene associated with âmitochondrial DNA breakageâ syndrome. Contrary to previous studies in patients with CharcotâMarieâTooth disease type 2A, fibroblasts carrying the MFN2 mutation present with a respiratory chain deficiency, a fragmentation of the mitochondrial network and a significant reduction of MFN2 protein expression. Furthermore, we show for the first time that impaired mitochondrial fusion is responsible for a deficiency to repair stress-induced mitochondrial DNA damage. It is likely that defect in mitochondrial DNA repair is due to variability in repair protein content across the mitochondrial population and is at least partially responsible for mitochondrial DNA instability. <br/
Recommended from our members
Rf beam deflection measurements and corrections in the SLC linac
The requirements of rf acceleration in the SLC linac to produce high energy beams are complicated by the presence of small transverse rf beam deflections which arise from several sources. These rf deflections place stringent tolerances on the phase and amplitude stability of the klystrons. They also force the use of special magnetic bumps to correct the trajectories of oppositely charged beams that will pass down the linac. If left unabated, rf deflections can limit the performance of the SLC. There are several methods to reduce the deflections. Many measurements of rf deflections have been made in the low energy part of the linac where the beams are most sensitive. 4 refs., 8 figs., 2 tabs
Status of the Super-B factory Design
The SuperB international team continues to optimize the design of an
electron-positron collider, which will allow the enhanced study of the origins
of flavor physics. The project combines the best features of a linear collider
(high single-collision luminosity) and a storage-ring collider (high repetition
rate), bringing together all accelerator physics aspects to make a very high
luminosity of 10 cm sec. This asymmetric-energy collider
with a polarized electron beam will produce hundreds of millions of B-mesons at
the (4S) resonance. The present design is based on extremely low
emittance beams colliding at a large Piwinski angle to allow very low
without the need for ultra short bunches. Use of crab-waist
sextupoles will enhance the luminosity, suppressing dangerous resonances and
allowing for a higher beam-beam parameter. The project has flexible beam
parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring
for longitudinal polarization of the electron beam at the Interaction Point.
Optimized for best colliding-beam performance, the facility may also provide
high-brightness photon beams for synchrotron radiation applications
Computer-aided design of nano-filter construction using DNA self-assembly
Computer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules
- âŠ