118 research outputs found

    Complement in health and disease

    Get PDF
    European Union (EU-GLGI-CT2001-01`039); Dutch Kidney Foundation; Wieslab IDEONUBL - phd migration 201

    A functional TGFB1 polymorphism in the donor associates with long-term graft survival after kidney transplantation

    Get PDF
    BACKGROUND: Improvement of long-term outcomes in kidney transplantation remains one of the most pressing challenges, yet drug development is stagnating. Human genetics offers an opportunity for much-needed target validation in transplantation. Conflicting data exist about the effect of transforming growth factor-beta 1 (TGF-β1) on kidney transplant survival, since TGF-β1 has pro-fibrotic and protective effects. We investigated the impact of a recently discovered functional TGFB1 polymorphism on kidney graft survival. METHODS: We performed an observational cohort study analysing recipient and donor DNA in 1271 kidney transplant pairs from the University Medical Centre Groningen in The Netherlands, and associated a low-producing TGFB1 polymorphism (rs1800472-C > T) with 5-, 10- and 15-year death-censored kidney graft survival. RESULTS: Donor genotype frequencies of rs1800472 in TGFB1 differed significantly between patients with and without graft loss (P = 0.014). Additionally, the low-producing TGFB1 polymorphism in the donor was associated with an increased risk of graft loss following kidney transplantation (hazard ratio = 2.12 for the T-allele; 95% confidence interval 1.18–3.79; P = 0.012). The incidence of graft loss within 15 years of follow-up was 16.4% in the CC-genotype group and 31.6% in the CT-genotype group. After adjustment for transplant-related covariates, the association between the TGFB1 polymorphism in the donor and graft loss remained significant. In contrast, there was no association between the TGFB1 polymorphism in the recipient and graft loss. CONCLUSIONS: Kidney allografts possessing a low-producing TGFB1 polymorphism have a higher risk of late graft loss. Our study adds to a growing body of evidence that TGF-β1 is beneficial, rather than harmful, for kidney transplant survival

    Dysregulation of Complement Activation and Placental Dysfunction:A Potential Target to Treat Preeclampsia?

    Get PDF
    Preeclampsia is one of the leading causes of maternal and neonatal mortality and morbidity worldwide, affecting 2-8% of all pregnancies. Studies suggest a link between complement activation and preeclampsia. The complement system plays an essential role in the innate immunity, leading to opsonization, inflammation, and elimination of potential pathogens. The complement system also provides a link between innate and adaptive immunity and clearance of immune complexes and apoptotic cells. During pregnancy there is increased activity of the complement system systemically. However, locally at the placenta, complement inhibition is crucial for the maintenance of a normal pregnancy. Inappropriate or excessive activation of the complement system at the placenta is likely involved in placental dysfunction, and is in turn associated with pregnancy complications like preeclampsia. Therefore, modulation of the complement system could be a potential therapeutic target to prevent pregnancy complications such as preeclampsia. This review, based on a systematic literature search, gives an overview of the complement system and its activation locally in the placenta and systemically during healthy pregnancies and during complicated pregnancies, with a focus on preeclampsia. Furthermore, this review describes results of animal and human studies with a focus on the complement system in pregnancy, and the role of the complement system in placental dysfunction. Various clinical and animal studies provide evidence that dysregulation of the complement system is associated with placental dysfunction and therefore with preeclampsia. Several drugs are used for prevention and treatment of preeclampsia in humans and animal models, and some of these drugs work through complement modulation. Therefore, this review further discusses these studies examining pharmaceutical interventions as treatment for preeclampsia. These observations will help direct research to generate new target options for prevention and treatment of preeclampsia, which include direct and indirect modulation of the complement system

    Deficiency of functional mannose-binding lectin is not associated with infections in patients with systemic lupus erythematosus

    Get PDF
    Infection imposes a serious burden on patients with systemic lupus erythematosus (SLE). The increased infection rate in SLE patients has been attributed in part to defects of immune defence. Recently, the lectin pathway of complement activation has also been suggested to play a role in the occurrence of infections in SLE. In previous studies, SLE patients homozygous for mannose-binding lectin (MBL) variant alleles were at an increased risk of acquiring serious infections in comparison with patients who were heterozygous or homozygous for the normal allele. This association suggests a correlation between functional MBL level and occurrence of infections in SLE patients. We therefore investigated the biological activity of MBL and its relationship with the occurrence of infections in patients with SLE. Demographic and clinical data were collected in 103 patients with SLE. Functional MBL serum levels and MBL-induced C4 deposition were measured by enzyme-linked immunosorbent assay using mannan as coat and an MBL- or C4b-specific monoclonal antibody. The complete MBL-dependent pathway activity was determined by using an assay that measures the complete MBL pathway activity in serum, starting with binding of MBL to mannan, and was detected with a specific monoclonal antibody against C5b-9. Charts were systematically reviewed to obtain information on documented infections since diagnosis of SLE. Major infections were defined as infections requiring hospital admission and intravenous administration of antibiotics. In total, 115 infections since diagnosis of lupus, including 42 major infections, were documented in the 103 SLE patients (mean age 41 ± 13 years, mean disease duration 7 ± 4 years). The percentage of SLE patients with severe MBL deficiency was similar to that in 100 healthy controls: 13% versus 14%, respectively. Although deposition of C4 to mannan and MBL pathway activity were reduced in 21% and 43% of 103 SLE patients, respectively, neither functional MBL serum levels nor MBL pathway activity was associated with infections or major infections in regression analyses. In conclusion, SLE patients frequently suffer from infections, but deficiency of functional MBL does not confer additional risk

    Different selectivities of oxidants during oxidation of methionine residues in the α-1-proteinase inhibitor

    Get PDF
    AbstractOxidation of the reactive site methionine (Met) in α-1-proteinase inhibitor (α-1-PI) to methionine sulfoxide (Met(O)) is known to cause depletion of its elastase inhibitory activity. To estimate the selectivity of different oxidants in converting Met to Met(O) in α-1-PI, we measured the molar ratio Met(O)/α-1-PI at total inactivation. This ratio was determined to be 1.2 for both the myeloperoxidase/H2O2/chloride system and the related compound NH2Cl. With taurine monochloramine, another myeloperoxidase-related oxidant, 1.05 mol Met(O) were generated per mol α-1-PI during inactivation. These oxidants attack preferentially one Met residue in α-1-PI, which is identical with Met 358, as concluded from the parallelism of loss of elastase inhibitory activity and oxidation of Met. A similar high specificity for Met oxidation was determined for the xanthine oxidase-derived oxidants. In contrast, the ratio found for ozone and m-chloroperoxybenzoic acid was 6.0 and 5.0, respectively, indicating oxidation of additional Met residues besides the reactive site Met in α-1-PI, i.e. unselective action of these oxidants. Further studies were performed on the efficiency of oxidants for total depletion of the elastase inhibitory capacity of α-1-PI. Ozone and m-chloroperoxybenzoic acid were 10-fold less effective and the superoxide anion/hydroxyl radicals were 30–50-fold less effective to inactivate the elastase inhibitory activity as compared to the myeloperoxidase-derived oxidants. The myeloperoxidase-related oxidants are discussed as important regulators of α-1-PI activity in vivo

    Blocking Complement Factor B Activation Reduces Renal Injury and Inflammation in a Rat Brain Death Model

    Get PDF
    Introduction: The majority of kidneys used for transplantation are retrieved from brain-dead organ donors. In brain death, the irreversible loss of brain functions results in hemodynamic instability, hormonal changes and immunological activation. Recently, brain death has been shown to cause activation of the complement system, which is adversely associated with renal allograft outcome in recipients. Modulation of the complement system in the brain-dead donor might be a promising strategy to improve organ quality before transplantation. This study investigated the effect of an inhibitory antibody against complement factor B on brain death-induced renal inflammation and injury. Method: Brain death was induced in male Fischer rats by inflating a balloon catheter in the epidural space. Anti-factor B (anti-FB) or saline was administered intravenously 20 min before the induction of brain death (n = 8/group). Sham-operated rats served as controls (n = 4). After 4 h of brain death, renal function, renal injury, and inflammation were assessed. Results: Pretreatment with anti-FB resulted in significantly less systemic and local complement activation than in saline-treated rats after brain death. Moreover, anti-FB treatment preserved renal function, reflected by significantly reduced serum creatinine levels compared to saline-treated rats after 4 h of brain death. Furthermore, anti-FB significantly attenuated histological injury, as seen by reduced tubular injury scores, lower renal gene expression levels (>75%) and renal deposition of kidney injury marker-1. In addition, anti-FB treatment significantly prevented renal macrophage influx and reduced systemic IL-6 levels compared to saline-treated rats after brain death. Lastly, renal gene expression of IL-6, MCP-1, and VCAM-1 were significantly reduced in rats treated with anti-FB. Conclusion: This study shows that donor pretreatment with anti-FB preserved renal function, reduced renal damage and inflammation prior to transplantation. Therefore, inhibition of factor B in organ donors might be a promising strategy to reduce brain death-induced renal injury and inflammation.Nephrolog

    Soluble CD59 in peritoneal dialysis:a potential biomarker for peritoneal membrane function

    Get PDF
    INTRODUCTION: Various studies have reported the importance of complement regulators in preventing mesothelial damage during peritoneal dialysis (PD). Its assessment, however, is limited in clinical practice due to the lack of easy access to the peritoneal membrane. Recently, a soluble form of the complement regulatory protein CD59 (sCD59) has been described. We therefore aimed to investigate the role of sCD59 in PD. METHODS: Plasma sCD59 was measured in 48 PD patients, 41 hemodialysis patients, 15 non-dialysis patients with chronic kidney disease and 14 healthy controls by ELISA (Hycult; HK374-02). Additionally, sCD59 and sC5b-9 were assessed in the peritoneal dialysate. RESULTS: sCD59 and sC5b-9 were detectable in the peritoneal dialysate of all patients, and marginally correlated (r = 0.27, P = 0.06). Plasma sCD59 levels were significantly higher in PD patients than in patients with chronic kidney disease and healthy controls, but did not differ from hemodialysis patients. During follow-up, 19% of PD patients developed peritoneal membrane failure and 27% of PD patients developed loss of residual renal function. In adjusted models, increased sCD59 levels in the dialysate (HR 3.44, 95% CI 1.04–11.40, P = 0.04) and in plasma (HR 1.08, 95% CI 1.01–1.17, P = 0.04) were independently associated with the occurrence of peritoneal membrane failure. Higher plasma levels of sCD59 were also associated with loss of residual renal function (HR 1.10, 95% CI 1.04–1.17, P < 0.001). CONCLUSIONS: Our study suggests that sCD59 has potential as a biomarker to predict peritoneal membrane function and loss of residual renal function in PD, thereby offering a tool to improve patient management. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40620-020-00934-7

    A non-muscle myosin heavy chain 9 genetic variant is associated with graft failure following kidney transplantation

    Get PDF
    Background Despite current matching efforts to identify optimal donor-recipient pairs for kidney transplantation, alloimmunity remains a major source of late transplant failure. Additional genetic parameters in donor-recipient matching could help improve long-term outcomes. Here, we studied the impact of a non-muscle myosin heavy chain 9 gene (MYH9) polymorphism on allograft failure. Methods We conducted an observational cohort study, analyzing the DNA of 1,271 kidney donor-recipient transplant pairs from a single academic hospital for the MYH9 rs11089788 C>A polymorphism. The associations of the MYH9 genotype with risk of graft failure, biopsy-proven acute rejection (BPAR), and delayed graft function (DGF) were estimated. Results A trend was seen in the association between the MYH9 polymorphism in the recipient and graft failure (recessive model, p = 0.056), but not for the MYH9 polymorphism in the donor. The AA-genotype MYH9 polymorphism in recipients was associated with higher risk of DGF (p = 0.03) and BPAR (p = 0.021), although significance was lost after adjusting for covariates (p = 0.15 and p = 0.10, respectively). The combined presence of the MYH9 polymorphism in donor-recipient pairs was associated with poor long-term kidney allograft survival (p = 0.04), in which recipients with an AA genotype receiving a graft with an AA genotype had the worst outcomes. After adjustment, this combined genotype remained significantly associated with 15-year death-censored kidney graft survival (hazard ratio, 1.68; 95% confidence interval, 1.05–2.70; p = 0.03). Conclusion Our results reveal that recipients with an AA-genotype MYH9 polymorphism receiving a donor kidney with an AA genotype have significantly elevated risk of graft failure after kidney transplantation

    Arteriolar C4d in IgA Nephropathy:A Cohort Study

    Get PDF
    Rationale & Objective: Glomerular C4d (C4dG) as an indicator of the lectin pathway of complement activation in immunoglobulin A nephropathy (IgAN) has been associated with more severe kidney damage. Recent studies have suggested that vascular lesions in IgAN biopsy specimens with complement deposition are also associated with disease progression. We aimed to study the clinical significance of arteriolar C4d (C4dA) in IgAN kidney biopsy tissue. Study Design: Retrospective cohort study. Setting & Participants: Kidney biopsy specimens from 126 adults with IgAN diagnosed by Oxford classification criteria were stained using immunohistochemistry and classified according to C4dG and C4dA deposition. Additionally, vascular lesions including acute and chronic microangiopathy, arteriolar hyalinosis, and arterial intima fibrosis were characterized. Predictor: C4dA. Outcome: Progressive kidney disease, defined as a decline in estimated glomerular filtration rate by >= 50% or occurrence of kidney failure. Analytical Approach: The association of C4dA and C4dG with baseline clinical and histologic characteristics, as well as progressive kidney disease, were assessed with survival analysis using multivariable Cox regression analysis. Results: C4dA was identified in 21 (17%) patients and was associated with mean arterial pressure, arterial intima fibrosis, and chronic microangiopathy. C4dA was also significantly associated with C4dG and both were associated with progressive kidney disease. In regression analysis, C4dA remained significantly associated with progressive kidney disease after adjusting for other significant predictors, including baseline estimated glomerular filtration rate, mean arterial pressure, and the presence of crescents. Limitations: Findings based on the retrospective evaluation of a single center's experience, limited number of events, a small number of patients with a broad range of kidney disease stages, and use of immunohistochemistry rather than immunofluorescence to detect C4d. Conclusions: C4dA is a potential biomarker for disease progression in IgAN. It should be further investigated in larger cohorts to determine the value of C4dA in improving prediction of IgAN disease progression

    Inhibition of tyrosine kinase receptor signaling attenuates fibrogenesis in an ex vivo model of human renal fibrosis

    Get PDF
    Poor translation from animal studies to human clinical trials is one of the main hurdles in the development of new drugs. Here, we used precision-cut kidney slices (PCKS) as a translational model to study renal fibrosis and to investigate whether inhibition of tyrosine kinase receptors, with the selective inhibitor nintedanib, can halt fibrosis in murine and human PCKS. We used renal tissue of murine and human origins to obtain PCKS. Control slices and slices treated with nintedanib were studied to assess viability, activation of tyrosine kinase receptors, cell proliferation, collagen type I accumulation, and gene and protein regulation. During culture, PCKS spontaneously develop a fibrotic response that resembles in vivo fibrogenesis. Nintedanib blocked culture-induced phosphorylation of platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Furthermore, nintedanib inhibited cell proliferation and reduced collagen type I accumulation and expression of fibrosis-related genes in healthy murine and human PCKS. Modulation of extracellular matrix homeostasis was achieved already at 0.1 μM, whereas high concentrations (1 and 5 μM) elicited possible nonselective effects. In PCKS from human diseased renal tissue, nintedanib showed limited capacity to reverse established fibrosis. In conclusion, nintedanib attenuated the onset of fibrosis in both murine and human PCKS by inhibiting the phosphorylation of tyrosine kinase receptors; however, the reversal of established fibrosis was not achieved
    • …
    corecore