25 research outputs found
Dataset debt in biomedical language modeling
Large-scale language modeling and natural language prompting have demonstrated exciting capabilities for few and zero shot learning in NLP. However, translating these successes to specialized domains such as biomedicine remains challenging, due in part to biomedical NLP's significant dataset debt - the technical costs associated with data that are not consistently documented or easily incorporated into popular machine learning frameworks at scale. To assess this debt, we crowdsourced curation of datasheets for 167 biomedical datasets. We find that only 13% of datasets are available via programmatic access and 30% lack any documentation on licensing and permitted reuse. Our dataset catalog is available at: https://tinyurl.com/bigbio22
The role of AgNPs in selective oxidation of benzyl alcohol in vapor phase using morphologically tailored MnOâ‚‚ nanorods in the presence of air
Abstract
Vapor phase benzyl alcohol (BnOH) oxidation reaction is investigated over a pre–synthesised morphologically designed shape controlled spherical silver nanoparticles (AgNPs) decorated on manganese oxide nanorods (α–MnO₂NRs) in the presence of air. The combination of silver nanoparticles and the α–MnO₂NRs interface enabled the increased oxygen vacancies (Ov) and exhibited the strong metal–support interactions (SMSI) in surface oxygen activation. The effect of Ag loadings is significant and the optimal 1 wt% Ag loaded catalyst (1Ag/MnO₂NRs) showed excellent performance in benzyl alcohol oxidation due to high adsorption capacity, enhanced oxygen vacancies and red–ox properties. The DFT calculations confirmed that the high BnOH surface adsorption was exhibited over Ag modified MnO₂NRs than the bare α–MnO₂NRs. The optimized 1Ag/α–MnO₂NRs catalytic system achieved 2.6 fold higher activity compared to bare α–MnO₂NRs. These results provided novel insights on the rational design of shape dependent metal/metal oxide based heterogeneous catalysts
Activity of nickel supported over nanorod-shaped strontium hydroxyapatite catalysts in selective methanation of CO & COâ‚‚
Abstract
Nickel modified strontium hydroxyapatite (Ni/Sr-HAP) supported catalysts are studied in selective methanation of CO/CO₂. In this work, a new type of nano rod-shaped strontium hydroxyapatite-based catalysts with two different sizes and aspect ratios were prepared by sol–gel method and in next step, Ni precursor was wet impregnated i.e., denoted as Ni/Sr-HAP and Ni/Sr-HAP(F127). The catalytic tests were performed in CO and CO2 methanation reactions and evaluated the light-off temperatures curves (225–450 °C) under ambient pressure in a fixed-bed flow reactor. The physicochemical properties of the prepared catalysts were characterized by XRD, N2 physisorption, TEM, SEM, TPR, CO₂/H₂-TPD and H₂-chemisorption techniques. From XRD analysis, both Ni/Sr-HAP and Ni/Sr-HAP(F127) were identified as the hydroxyapatite type structure with high crystallinity and very low intensity peaks corresponds to strontium phosphates as the main phase and structure. The TEM and SEM micrographs of Ni/Sr-HAP catalysts displayed a nano- rod shaped morphology with different dimensions and exhibited average Ni particle size of ~ 9.2 nm. While Ni/Sr-HAP(F127) shown the rod size in the length in the range of 100–250 nm and width in the range of 20–40 nm with average Ni particle size 5.7 nm. The F127 mediated support Sr-HAP synthesis i.e., Ni/Sr-HAP(F127) mesoporous catalyst possessed higher metal surface with smaller Ni particles size and possessed higher CO₂ adsorption capacity. The medium strength basic sites of Ni/Sr-HAP catalyst played an important role in methanation reactions. Based on the characterization and the catalysts activity results, small sized nanorods of Ni/Sr-HAP(F127) is the most active and selective catalyst due to the higher Ni dispersion, higher amounts of medium basic sites, and reducibility character than the bigger nanorods based Ni/Sr-HAP catalyst
Selective hydrogenolysis of biodiesel waste bioglycerol over titanium phosphate (TiP) catalysts:the effect of Pt & WO₃ loadings
Abstract
Glycerol is an important by-product (biowaste) from biodiesel production. Transformation of glycerol into value-added compounds is critical in improving the overall efficiency of the biodiesel production. In this work, a sustainable and cleaner production of 1,3-propanediol (1,3-PDO) by vapor phase hydrogenolysis of glycerol was performed over titanium phosphate (TiP) supported catalysts by varying the Pt and WO₃ loadings (5–20 wt.%). The WO₃ promoted Pt modified TiP catalysts were prepared by a simple wet impregnation method and characterized by various analytical techniques in determining the key properties. Furthermore, the catalyst activity and stability were studied under different reaction conditions. The synergistic effects of Pt and WO₃ loadings on the final performance of the catalyst has been significant in improving the hydrogen transfer rate. Both Pt and WO₃ promotional effects is envisaged the enhanced catalytic properties in conjunction with TiP support acidity. WO₃ incorporation increased Brønsted acidity and formed strong interactions with Pt over TiP support. Both Lewis and Brønsted acid sites presented but BAS played a key role in enhancing the 1,3-PDO selectivity in a bifunctional dehydration-hydrogenation reaction mechanism of glycerol. The effect of reaction temperature, contact times and the weight hour space velocity were evaluated. Overall, under optimized reaction conditions, 2 wt.% Pt-10 wt.% WO₃/TiP catalyst displayed superior activity with a maximum glycerol conversion of ~ 85% and ~ 51% of 1,3-PDO selectivity achieved at time on stream of 4 h
Lanthanum phosphate:an efficient catalyst for acrylic acid production through lactic acid dehydration
Abstract
In this work, biomass-based platform molecule lactic acid conversion to acrylic acid has been studied. A series of lanthanum phosphate (LaP) catalysts prepared by varying the lanthanum to phosphorus (La/P) mole ratio (i.e., 0.2, 0.35, 0.5, 1.0, and 2.0) and also prepared at different calcination temperatures (i.e., 400, 500, 600, and 800 °C) were investigated. The catalysts were characterized by using different techniques and tested in the dehydration of lactic acid (LA) to acrylic acid (AA) production. All the synthesized catalysts were characterized to analyze the physicochemical properties such as degree of crystallinity, total surface acidity, specific surface area, and morphology. The La/P mole ratio was found to be significant in designing the optimized catalytic system. The NH₃-TPD results imply that all the catalysts exhibited varied amount of total acidity with phosphate loadings, which are mostly weak acid sites. The weak acid sites which are mainly Lewis acidity type played an important role in producing AA selectively and efficiently from the LA conversion. The most optimized reaction conditions were determined to obtain the highest LA conversion, selectivity, and AA yield. The catalyst with an La/P mole ratio of 0.35 and calcined at 500 °C exhibited the best performance with complete LA conversion, AA selectivity of ~ 74%, and a maximum yield of AA of ~ 74%. Furthermore, the LaP(0.35)[500] catalyst was successfully tested at three different time on streams and found to be stable
Synergistic effects of graphene oxide grafted chitosan & decorated MnO2 nanorods composite materials application in efficient removal of toxic industrial dyes
Abstract
In this study, we designed a heterogeneous graphene oxide (GO) grafted on chitosan decorated with MnO2 nanorods (α-MnO2NRs/GO-Chit) composite materials and its ability to remove the cationic and anionic toxic dyes from wastewaters were analysed. The synthesised materials presented an effective stabilization of active MnO2 nanorods (NRs) on the GO-Chit surface. The synthesised materials were detailed characterised by several spectroscopic and microscopic techniques such as, FT-IR, P-XRD, SEM, TEM, Raman, TGA, XPS, BET, CO2-TPD and UV–Visible analysis. In addition, α-MnO2NRs/GO-Chit material is successfully applied in removal of industrial ionic dyes such as amido black 10B (AB) and methylene blue (MB), respectively. The dye adsorption experiments confirmed that the GO-Chit/α-MnO2 NRs material exhibited remarkably high adsorption capacity in efficient removal of cationic dye methylene blue (MB) and anionic dye amido black 10B (AB). The maximum MB dye removal (97%) process completed in 24 min at C0 = 30 mg·L-1, but in the case of AB the maximum dye removal (80%) process was reached in 700 min. Over GO-Chit/α-MnO2 NRs hybrid material, a maximum theoretical monolayer adsorption (qmax values is 328.9 mg g-1) of MB was calculated from the Langmuir isotherm equation. In case MB, a faster adsorption and 2.18 times maximum adsorption capacity was achieved than that of AB10 dye. The enhanced adsorption over α-MnO2NRs/GO-Chit is due to the increased surface functionalities (i.e., oxygen-containing groups), high basicity and strong electrostatic forces between MnO2 nanorods and GO-Chit. Furthermore, α-MnO2NRs/GO-Chit hybrid material displayed good stability after 10 successive adsorption tests