2,162 research outputs found
SETI science working group report
This report covers the initial activities and deliberations of a continuing working group asked to assist the SETI Program Office at NASA. Seven chapters present the group's consensus on objectives, strategies, and plans for instrumental R&D and for a microwave search for extraterrestrial in intelligence (SETI) projected for the end of this decade. Thirteen appendixes reflect the views of their individual authors. Included are discussions of the 8-million-channel spectrum analyzer architecture and the proof-of-concept device under development; signal detection, recognition, and identification on-line in the presence of noise and radio interference; the 1-10 GHz sky survey and the 1-3 GHz targeted search envisaged; and the mutual interests of SETI and radio astronomy. The report ends with a selective, annotated SETI reading list of pro and contra SETI publications
Polaron Transport in the Paramagnetic Phase of Electron-Doped Manganites
The electrical resistivity, Hall coefficient, and thermopower as functions of
temperature are reported for lightly electron-doped Ca(1-x)La(x)MnO(3)(0 <= x
<= 0.10). Unlike the case of hole-doped ferromagnetic manganites, the magnitude
and temperature dependence of the Hall mobility for these compounds is found to
be inconsistent with small-polaron theory. The transport data are better
described by the Feynman polaron theory and imply intermediate coupling (alpha
\~ 5.4) with a band effective mass, m*~4.3 m_0, and a polaron mass, m_p ~ 10
m_0.Comment: 7 pp., 7 Fig.s, to be published, PR
Vafa-Witten Estimates for Compact Symmetric Spaces
We give an optimal upper bound for the first eigenvalue of the untwisted
Dirac operator on a compact symmetric space G/H with rk G-rk H\le 1 with
respect to arbitrary Riemannian metrics. We also prove a rigidity statement.Comment: LaTeX, 11 pages. V2: Rigidity statement added, minor changes. To
appea
Query processing of spatial objects: Complexity versus Redundancy
The management of complex spatial objects in applications, such as geography and cartography,
imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed representation
as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed representation
and the convex decomposition method. More important than the absolute gain in performance
by a factor of up to an order of magnitude is the robust performance of our new decomposition
techniques over the whole range of query selectivity
Theory of Electron Spin Relaxation in ZnO
Doped ZnO is a promising material for spintronics applications. For such
applications, it is important to understand the spin dynamics and particularly
the spin coherence of this II-VI semiconductor. The spin lifetime
has been measured by optical orientation experiments, and it shows a surprising
non-monotonic behavior with temperature. We explain this behavior by invoking
spin exchange between localized and extended states. Interestingly, the effects
of spin-orbit coupling are by no means negligible, in spite of the relatively
small valence band splitting. This is due to the wurtzite crystal structure of
ZnO. Detailed analysis allows us to characterize the impurity binding energies
and densities, showing that optical orientation experiments can be used as a
characterization tool for semiconductor samples.Comment: 7 pages, 1 figure: minor changes Accepted by Phys. Rev.
Flexible and reusable parylene C mask technology for applications in cascade impactor air quality monitoring systems
The development of traceable new methodologies to quantify elemental air pollutants in particulate matter (PM) supports modernization of methods used in air quality monitoring networks in Europe. In the framework of the EURAMET EMPIR AEROMET II project, the combination of cascade impactor aerosol sampling and total reflection X-ray fluorescence elemental spectroscopy (TXRF) was investigated. This technique requires a traceable calibration based on reference samples. This paper describes a new, simple and effective method to produce such reference samples using flexible, reusable, and low-cost parylene C shadow masks, fabricated by photolithographic steps. These shadow masks can be used to produce reference samples that mimic the Dekati cascade impactor's deposition patterns by applying as-prepared micro stencils to 30 mm acrylic substrates and evaporating a reference material (Ti) in arrangements of thin circular dots. The highly flexible direct patterning of acrylic discs with reference material, otherwise impossible with conventional photolithography, allows multiple reusing of the same micro stencils. The aspect ratios of the dots could be repeated with an error less than 4%. A first set of standard reference samples for the 13 stages of the Dekati cascade impactor was produced and preliminary TXRF measurements of the deposited Ti masses were performed. The centricity of the deposition patterns turned out to be an important parameter for the quality of the TXRF results. The parylene mask technology for the production of reference samples turns out to be a promising new approach for the traceable calibration of TXRF spectrometers for the quantification of element concentrations in environmental aerosol samples but, due to its great versatility, it could be used for several other micropatterning applications on conventional and unconventional substrates
LINVIEW: Incremental View Maintenance for Complex Analytical Queries
Many analytics tasks and machine learning problems can be naturally expressed
by iterative linear algebra programs. In this paper, we study the incremental
view maintenance problem for such complex analytical queries. We develop a
framework, called LINVIEW, for capturing deltas of linear algebra programs and
understanding their computational cost. Linear algebra operations tend to cause
an avalanche effect where even very local changes to the input matrices spread
out and infect all of the intermediate results and the final view, causing
incremental view maintenance to lose its performance benefit over
re-evaluation. We develop techniques based on matrix factorizations to contain
such epidemics of change. As a consequence, our techniques make incremental
view maintenance of linear algebra practical and usually substantially cheaper
than re-evaluation. We show, both analytically and experimentally, the
usefulness of these techniques when applied to standard analytics tasks. Our
evaluation demonstrates the efficiency of LINVIEW in generating parallel
incremental programs that outperform re-evaluation techniques by more than an
order of magnitude.Comment: 14 pages, SIGMO
- …