5 research outputs found
Perioperative Myocardial Injury After Non-cardiac Surgery: Incidence, Mortality, and Characterization
Perioperative myocardial injury (PMI) seems to be a contributor to mortality after noncardiac surgery. Because the vast majority of PMIs are asymptomatic, PMI usually is missed in the absence of systematic screening.; We performed a prospective diagnostic study enrolling consecutive patients undergoing noncardiac surgery who had a planned postoperative stay of ≥24 hours and were considered at increased cardiovascular risk. All patients received a systematic screening using serial measurements of high-sensitivity cardiac troponin T in clinical routine. PMI was defined as an absolute high-sensitivity cardiac troponin T increase of ≥14 ng/L from preoperative to postoperative measurements. Furthermore, mortality was compared among patients with PMI not fulfilling additional criteria (ischemic symptoms, new ECG changes, or imaging evidence of loss of viable myocardium) required for the diagnosis of spontaneous acute myocardial infarction versus those that did.; From 2014 to 2015 we included 2018 consecutive patients undergoing 2546 surgeries. Patients had a median age of 74 years and 42% were women. PMI occurred after 397 of 2546 surgeries (16%; 95% confidence interval, 14%-17%) and was accompanied by typical chest pain in 24 of 397 patients (6%) and any ischemic symptoms in 72 of 397 (18%). Crude 30-day mortality was 8.9% (95% confidence interval [CI], 5.7-12.0) in patients with PMI versus 1.5% (95% CI, 0.9-2.0) in patients without PMI (; P; <0.001). Multivariable regression analysis showed an adjusted hazard ratio of 2.7 (95% CI, 1.5-4.8) for 30-day mortality. The difference was retained at 1 year with mortality rates of 22.5% (95% CI, 17.6-27.4) versus 9.3% (95% CI, 7.9-10.7). Thirty-day mortality was comparable among patients with PMI not fulfilling any other of the additional criteria required for spontaneous acute myocardial infarction (280/397, 71%) versus those with at least 1 additional criterion (10.4%; 95% CI, 6.7-15.7, versus 8.7%; 95% CI, 4.2-16.7;; P; =0.684).; PMI is a common complication after noncardiac surgery and, despite early detection during routine clinical screening, is associated with substantial short- and long-term mortality. Mortality seems comparable in patients with PMI not fulfilling any other of the additional criteria required for spontaneous acute myocardial infarction versus those patients who do.; URL: https://www.clinicaltrials.gov. Unique identifier: NCT02573532
Peri-operative copeptin concentrations and their association with myocardial injury after vascular surgery : a prospective observational cohort study
BACKGROUND: Copeptin levels in conjunction with cardiac troponin may be used to rule out early myocardial infarction in patients presenting with chest pain. Raised pre-operative copeptin has been shown to be associated with postoperative cardiac events. However, very little is known about the peri-operative time course of copeptin or the feasibility of very early postoperative copeptin measurement to diagnose or rule-out myocardial injury.
OBJECTIVES: In this preparatory analysis for a larger trial, we sought to examine the time course of peri-operative copeptin and identify the time at which concentrations returned to pre-operative levels. Second, in an explorative analysis, we sought to examine the association of copeptin in general and at various time points with myocardial injury occurring within the first 48 h.
DESIGN: Preparatory analysis of a prospective, observational cohort study.
SETTING: Single university centre from February to July 2016.
PATIENTS: A total of 30 consecutive adults undergoing vascular surgery.
INTERVENTION: Serial peri-operative copeptin measurements.
MAIN OUTCOME MEASURE: We measured copeptin concentrations before and immediately after surgery (0 h), then at 2, 4, 6 and 8 h after surgery and on the first and second postoperative day. Postoperative concentrations were compared with pre-operative levels with a Wilcoxon signed-rank test. Second, we explored an association between postoperative copeptin concentrations and myocardial injury by the second postoperative day. Myocardial injury was defined as a 5 ng l(-1) increase between pre-operative and postoperative high-sensitivity cardiac troponin T with an absolute peak of at least 20 ng l(-1).
RESULTS: Immediate postoperative copeptin concentrations (median [interquartile range]) increased nearly eightfold from pre-operative values (8.5 [3.6 to 13.8] to 64.75 pmoll(-1) [29.6 to 258.7]; P < 0.001). Copeptin concentrations remained elevated until returning to baseline on the second postoperative day. Postoperative copeptin was significantly higher in patients experiencing myocardial injury than in those who did not (P = 0.02). The earliest most promising single time point for diagnosis may be immediately after surgery (0 h). The receiver-operating characteristics curve for immediate postoperative copeptin and myocardial injury by the second postoperative day was 0.743 (95% confidence interval 0.560 to 0.926).
CONCLUSION: Copeptin concentrations are greatly increased after vascular surgery and remain so until the 2nd postoperative day. Postoperative copeptin concentrations appear to be higher in patients who go on to exhibit myocardial injury. Immediate postoperative copeptin concentrations show promise for eliminating or identifying those at risk of myocardial injury
NT-proBNP or self-reported functional capacity in estimating risk of cardiovascular events after noncardiac surgery
IMPORTANCE Nearly 16 million surgical procedures are conducted in North America yearly, and postoperative cardiovascular events are frequent. Guidelines suggest functional capacity or B-type natriuretic peptides (BNP) to guide perioperative management. Data comparing the performance of these approaches are scarce.
OBJECTIVE To compare the addition of either N-terminal pro-BNP (NT-proBNP) or self-reported functional capacity to clinical scores to estimate the risk of major adverse cardiac events (MACE).
DESIGN, SETTING, AND PARTICIPANTS This cohort study included patients undergoing inpatient, elective, noncardiac surgery at 25 tertiary care hospitals in Europe between June 2017 and April 2020. Analysis was conducted in January 2023. Eligible patients were either aged 45 years or older with a Revised Cardiac Risk Index (RCRI) of 2 or higher or a National Surgical Quality Improvement Program, Risk Calculator for Myocardial Infarction and Cardiac (NSQIP MICA) above 1%, or they were aged 65 years or older and underwent intermediate or high-risk procedures.
EXPOSURES Preoperative NT-proBNP and the following self-reported measures of functional capacity were the exposures: (1) questionnaire-estimated metabolic equivalents (METs), (2) ability to climb 1 floor, and (3) level of regular physical activity.
MAIN OUTCOME AND MEASURES MACE was defined as a composite end point of in-hospital cardiovascular mortality, cardiac arrest, myocardial infarction, stroke, and congestive heart failure requiring transfer to a higher unit of care.
RESULTS A total of 3731 eligible patients undergoing noncardiac surgery were analyzed; 3597 patients had complete data (1258 women [35.0%]; 1463 (40.7%) aged 75 years or older; 86 [2.4%] experienced aMACE). Discrimination of NT-proBNP or functional capacity measures added to clinical scores did not significantly differ (Area under the receiver operating curve: RCRI, age, and 4MET, 0.704; 95% CI, 0.646-0.763; RCRI, age, and 4MET plus floor climbing, 0.702; 95% CI, 0.645-0.760; RCRI, age, and 4MET plus physical activity, 0.724; 95% CI, 0.672-0.775; RCRI, age, and 4MET plus NT-proBNP, 0.736; 95% CI, 0.682-0.790). Benefit analysis favored NT-proBNP at a threshold of 5% or below, ie, if true positives were valued 20 times or more compared with false positives. The findings were similar for NSQIP MICA as baseline clinical scores.
CONCLUSIONS AND RELEVANCE In this cohort study of nearly 3600 patients with elevated cardiovascular risk undergoing noncardiac surgery, there was no conclusive evidence of a difference between a NT-proBNP-based and a self-reported functional capacity-based estimate of MACE risk