17 research outputs found

    Physiological and genetic basis for variation in migratory behavior in the three-spined stickleback, Gasterosteus aculeatus

    Full text link

    Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus.

    Get PDF
    BACKGROUND:Molting is an essential biological process throughout the life history of crustaceans, which is regulated by many neuropeptide hormones expressed in the eyestalk. To better understand the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE) to analyze single eyestalk samples during the molting cycle by high-throughput sequencing. RESULTS:We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt (InM), pre-molt (PrM) and post-molt (PoM) cDNA libraries, respectively. A total of 1,394 molt-related differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analysis identified some important processes and pathways with key roles in molting regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first observed a pattern associated with the neuromodulator-related pathways during the molting cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of important molting-related transcripts were clustered and most of them had similar expression patterns, which suggests that there is a connection between these genes throughout the molt cycle. CONCLUSION:Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk at the whole transcriptome level. Together, our results, including DEGs, identification of molting-related biological processes and pathways, and observed expression patterns of important genes, provide a novel insight into the function of the eyestalk in molting regulation

    Dyspneic athlete

    No full text
    Breathing concerns in athletes are common and can be due to a wide variety of pathology. The most common etiologies are exercise-induced bronchoconstriction (EIB) and paradoxic vocal fold movement disorder (PVFMD). Although some patients may have both, PVFMD is often misdiagnosed as EIB, which can lead to unnecessary treatment. The history and physical exam are important to rule out life threatening pulmonary and cardiac causes as well as common conditions such as gastroesophageal reflux disease, sinusitis, and allergic etiologies. The history and physical exam have been shown to be not as vital in diagnosing EIB and PVFMD. Improvement in diagnostic testing with office base spirometry, bronchoprovocation testing, eucapnic voluntary hyperpnea (EVH) and video laryngoscopy are essential in properly diagnosing these conditions. Accurate diagnosis leads to proper management, which is essential to avoid unnecessary testing and save healthcare costs. Also important to the physician treating dyspnea in athletes is knowing regulations on medications, drug testing, and proper documentation needed for certain organizations. The differential diagnosis of dyspnea is broad and is not limited to EIB and PVFMD. Ruling out life threatening cardiac and pulmonary causes with a proper history, physical, and appropriate testing is essential. The purpose of this review is to highlight recent literature on the diagnosis and management of EIB and PVFMD as well as discuss other potential causes for dyspnea in the athlete
    corecore