9 research outputs found

    New Exactly Solvable Two-Dimensional Quantum Model Not Amenable to Separation of Variables

    Full text link
    The supersymmetric intertwining relations with second order supercharges allow to investigate new two-dimensional model which is not amenable to standard separation of variables. The corresponding potential being the two-dimensional generalization of well known one-dimensional P\"oschl-Teller model is proven to be exactly solvable for arbitrary integer value of parameter p:p: all its bound state energy eigenvalues are found analytically, and the algorithm for analytical calculation of all wave functions is given. The shape invariance of the model and its integrability are of essential importance to obtain these results.Comment: 23 page

    Bohr Hamiltonian with deformation-dependent mass term for the Kratzer potential

    Full text link
    The Deformation Dependent Mass (DDM) Kratzer model is constructed by considering the Kratzer potential in a Bohr Hamiltonian, in which the mass is allowed to depend on the nuclear deformation, and solving it by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Analytical expressions for spectra and wave functions are derived for separable potentials in the cases of gamma-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, moderates the increase of the moment of inertia with deformation, removing a main drawback of the model.Comment: 27 pages, 6 figures, 8 tables. arXiv admin note: text overlap with arXiv:1103.593

    Mechanics and Quantum Supermechanics of a Monopole Probe Including a Coulomb Potential

    Full text link
    A supersymmetric Lagrangian used to study D-particle probes in a D6-brane background is exactly soluble. We present an analysis of the classical and quantum mechanics of this theory, including classical trajectories in the bosonic theory, and the exact quantum spectrum and wavefunctions, including both bound and unbound states.Comment: 34 pages with 4 black&white eps figures. v2: Reference corrected and a reference added. Figure files are significantly smaller; colour figures are included with the source (use \colorfigtrue). v3: Reference adde

    Mass transfer and structural analysis of microfluidic sensors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, February 2006.Includes bibliographical references (leaves 181-191).Surface-based sensors take advantage of the natural high surface-to-volume ratios in microfluidic devices, low reagent consumption and high potential for integration in more complex micro total analysis systems (microTAS or pTAS). This thesis studies the fundamental limits of on-chip integrated microfluidic sensors. More specifically, it focuses on detection methods involving surface interaction in channels with thicknesses on the order of a few microns or less. Through mass transfer analysis, we demonstrate that, for thin enough channels, sample detection is limited by the convective transport of analytes, and neither by diffusion nor reaction. The results provided extend the validity of transport models to include transport in the absence of mass transfer boundary layer. All existing analytic solutions to the Graetz problem are described and compiled. The analysis, complemented by finite element simulations, successfully predicts experimental observations made for on-chip immunoassays in micron-thick fluidic channels. Subsequently, our study of on chip detection systems is carried on with emphasis on resonating cantilever sensors. In order to interpret the output signal from these devices, we develop a dynamic cantilever model to link spatially and temporally dependent mass adsorption with resonance frequency change.(cont.) The mass adsorption is then directly related to the sensors' operating conditions via the mass transfer models previously developed. We then develop a 2D finite-element model capable of predicting the devices response and of extracting bimolecular rate constants. Finally, since hydraulic resistance severely increases as channels get shallower, we provide a structural analysis of polymer-based microsystems. Through scaling and numerical simulations we demonstrate the effect of channel deformation on the flow conditions inside the device and vice versa. Finally, channel deformation is experimentally quantified using optical methods and compared with the models developed. Throughout this thesis, the approach to physical modeling has been to use mathematical and numerical analysis as predictive tools in the design of integrated lab-on-a-chip systems. Whenever possible, scaling and analytic solutions are developed, since they provide a direct relationship between experimental observations, geometry and the multiple dependent variables in the system, and can be readily used as design criteria by the experimentalist.by Thomas Gervais.Ph.D

    Properties of mesons and quarks under extreme conditions from Gauge-Gravity duality

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 161-174).This thesis is concerned with the properties of mesons and quarks which live in the strongly coupled plasma of certain gauge theories which are similar to QCD. To study these plasmas we exploit gauge gravity duality which has been particularly useful for understanding QCD at temperatures above, but not far above, that at which quarks and gluons are deconfined. For example we will show analytically that mesons propagating through these plasmas have a subluminal limiting velocity at non zero temperatures. This limiting velocity decreases with increasing temperature towards the dissociation temperature. We then argue that this behavior will be universal in gauge theories with a gravity dual. If this result applies in QCD it would have observable effects in future heavy ion collisions at RHIC and the LHC. We also study the width of these mesons by exploiting nonperturbative string effects which can destabilize them, a result we attribute on the gauge theory side to thermal fluctuations. We show that the lifetime of these mesons, described via nonperturbative string effects, decreases rapidly above the momentum at which the meson speed approaches its limiting velocity. This is further evidence for the universality of the limiting velocity and it sharpens the signature expected in heavy ion collisions, especially when the LHC starts colliding ions. Finally the system that was used to study these mesons has an interesting phase structure in the plane of temperature and quark chemical potential. We find a third order phase transition line which ends at a tricritical point. We argue that this phase transition is driven by the same nonperturbative physics which contributed to the meson lifetime.by Thomas Faulkner.Ph.D

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology.Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the Listings are now included in volume 1.The complete Review (both volumes) is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is also available.The 2018 edition of the Review of Particle Physics should be cited as: M. Tanabashi (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the Listings are now included in volume 1. The complete Review (both volumes) is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is also available. The 2018 edition of the Review of Particle Physics should be cited as: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

    Review of Particle Physics: Particle Data Group

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the Listings are now included in volume 1. The complete Review (both volumes) is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is also available
    corecore