147 research outputs found

    Multielectron, Cation and Anion Redox in Lithium-Rich Iron Sulfide Cathodes

    Get PDF
    Conventional Li-ion cathodes store charge by reversible intercalation of Li coupled to metal cation redox. There has been increasing interest in new materials capable of accommodating more than one Li per transition-metal center, thereby yielding higher charge storage capacities. We demonstrate here that the lithium-rich layered iron sulfide Liā‚‚FeSā‚‚ as well as a new structural analogue, LiNaFeSā‚‚, reversibly store ā‰„1.5 electrons per formula unit and support extended cycling. Ex situ and operando structural and spectroscopic data indicate that delithiation results in reversible oxidation of FeĀ²āŗ concurrent with an increase in the covalency of the Feā€“S interactions, followed by reversible anion redox: 2 SĀ²ā»/(Sā‚‚)Ā²ā». S K-edge spectroscopy unequivocally proves the contribution of the anions to the redox processes. The structural response to the oxidation processes is found to be different in Liā‚‚FeSā‚‚ in contrast to that in LiNaFeSā‚‚, which we suggest is the cause for capacity fade in the early cycles of LiNaFeSā‚‚. The materials presented here have the added benefit of avoiding resource-sensitive transition metals such as Co and Ni. In contrast to Li-rich oxide materials that have been the subject of so much recent study and that suffer capacity fade and electrolyte degradation issues, the materials presented here operate within the stable potential window of the electrolyte, permitting a clearer understanding of the underlying processes

    Dark Matter Signals from Cascade Annihilations

    Full text link
    A leading interpretation of the electron/positron excesses seen by PAMELA and ATIC is dark matter annihilation in the galactic halo. Depending on the annihilation channel, the electron/positron signal could be accompanied by a galactic gamma ray or neutrino flux, and the non-detection of such fluxes constrains the couplings and halo properties of dark matter. In this paper, we study the interplay of electron data with gamma ray and neutrino constraints in the context of cascade annihilation models, where dark matter annihilates into light degrees of freedom which in turn decay into leptons in one or more steps. Electron and muon cascades give a reasonable fit to the PAMELA and ATIC data. Compared to direct annihilation, cascade annihilations can soften gamma ray constraints from final state radiation by an order of magnitude. However, if dark matter annihilates primarily into muons, the neutrino constraints are robust regardless of the number of cascade decay steps. We also examine the electron data and gamma ray/neutrino constraints on the recently proposed "axion portal" scenario.Comment: 36 pages, 11 figures, 7 tables; references adde
    • ā€¦
    corecore