1,092 research outputs found

    Clinical diagnosis and non-verbal ability of primary-one school children with LD

    Get PDF

    Shallow Triple Stream Three-dimensional CNN (STSTNet) for Micro-expression Recognition

    Full text link
    In the recent year, state-of-the-art for facial micro-expression recognition have been significantly advanced by deep neural networks. The robustness of deep learning has yielded promising performance beyond that of traditional handcrafted approaches. Most works in literature emphasized on increasing the depth of networks and employing highly complex objective functions to learn more features. In this paper, we design a Shallow Triple Stream Three-dimensional CNN (STSTNet) that is computationally light whilst capable of extracting discriminative high level features and details of micro-expressions. The network learns from three optical flow features (i.e., optical strain, horizontal and vertical optical flow fields) computed based on the onset and apex frames of each video. Our experimental results demonstrate the effectiveness of the proposed STSTNet, which obtained an unweighted average recall rate of 0.7605 and unweighted F1-score of 0.7353 on the composite database consisting of 442 samples from the SMIC, CASME II and SAMM databases.Comment: 5 pages, 1 figure, Accepted and published in IEEE FG 201

    Quantum error correction of coherent errors by randomization

    Full text link
    A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig

    Systematic Electromagnetic Interference Filter Design Based on Information From In-Circuit Impedance Measurements

    Get PDF
    Based on a two-probe measurement approach, the noise source and noise termination impedances of a switched-mode power supply (SMPS) under its normal operating condition are measured. With the accurate noise source and noise termination impedances, an electromagnetic interference (EMI) filter can be optimally designe

    Computing normalisers of highly intransitive groups

    Get PDF
    We investigate the normaliser problem, that is, given , ≤ ₙ, compute [sub](). The fastest known theoretical algorithm for this problem is simply exponential, but more efficient algorithms are known for some restriction of classes for and . In this thesis, we will focus on highly intransitive groups, which are groups with many orbits. We give new algorithms to compute [sub](ₙ)() for highly intransitive groups ≤ ₙ and for some subclasses that perform substantially faster than previous implementations in the computer algebra system GAP."This work was supported by the University of St Andrews (School of Computer Science and St Leonard’s College Scholarship)." -- Fundin

    Computing normalisers of intransitive groups

    Get PDF
    Funding: The first and third authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme “Groups, Representations and Applications: New perspectives”, where work on this paper was undertaken. This work was supported by EPSRC grant no EP/R014604/1. This work was also partially supported by a grant from the Simons Foundation. The first and second authors are supported by the Royal Society (RGF\EA\181005 and URF\R\180015).The normaliser problem takes as input subgroups G and H of the symmetric group Sn, and asks one to compute NG(H). The fastest known algorithm for this problem is simply exponential, whilst more efficient algorithms are known for restricted classes of groups. In this paper, we will focus on groups with many orbits. We give a new algorithm for the normaliser problem for these groups that performs many orders of magnitude faster than previous implementations in GAP. We also prove that the normaliser problem for the special case G=Sn  is at least as hard as computing the group of monomial automorphisms of a linear code over any field of fixed prime order.Publisher PDFPeer reviewe

    Polymer translocation through a nanopore under an applied external field

    Get PDF
    We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the 2D fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength EE, length of the chain NN, and length of the pore LL on forced translocation. As our main result, we find a crossover scaling for the translocation time τ\tau with the chain length from τN2ν\tau \sim N^{2\nu} for relatively short polymers to τN1+ν\tau \sim N^{1 + \nu} for longer chains, where ν\nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains vNνv \sim N^{- \nu}, which crosses over to vN1v \sim N^{- 1} for long polymers. The reason for this is that with increasing NN there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which RR_\parallel , the radius of gyration RgR_{g} along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large NN, however, the asymptotic scaling τN1+ν\tau \sim N^{1 + \nu} is recovered. In this regime, τ\tau is almost independent of LL. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for RLR_\parallel \approx L. We show here that this minimum persists for a weak fields EE such that ELEL is less than some critical value, but vanishes for large values of ELEL.Comment: 25 Pages, 10 figures. Submitted to J. Chem. Phys. J. Chem. Phys. 124, in press (2006

    Selective formation of pyridinic-type nitrogen-doped graphene and its application in lithium-ion battery anodes

    Get PDF
    We report a high-yield single-step method for synthesizing nitrogen-doped graphene nanostripes (N-GNSPs) with an unprecedentedly high percentage of pyridinic-type doping (>86% of the nitrogen sites), and investigate the performance of the resulting N-GNSPs as a lithium-ion battery (LIB) anode material. The as-grown N-GNSPs are compared with undoped GNSPs using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), helium ion-beam microscopy (HIM), and electrochemical methods. As an anode material we find that pyridinic-type N-GNSPs perform similarly to undoped GNSPs, suggesting that pyridinic sites alone are not responsible for the enhanced performance of nitrogen-doped graphene observed in previous studies, which contradicts common conjectures. In addition, post-mortem XPS measurements of nitrogen-doped graphene cycled as a lithium-ion battery anode are conducted for the first time, which reveal direct evidence for irreversible chemical changes at the nitrogen sites during cycling. These findings therefore provide new insights into the mechanistic models of doped graphene as LIB anodes, which are important in improving the anode designs for better LIB performance

    TRUNK AND SHOULDER MUSCLE ACTIVITIES DURING PUSH-UP EXERCISE ON STABLE AND UNSTBLE SURFACES

    Get PDF
    The purpose of this study was to evaluate muscle activity of the prime movers and core stabilizers on stable and unstable surfaces during push-up exercise. Subject: Fourteen healthy male participants (age, 21.6 ±2.3 years; height, 174.7 ±8.1cm; weight, 68.2 ±16.4kg) without low back pain and shoulder injury in the past year were recruited. The participants completed push-up exercise in three conditions: on the ground, air disc and sling. EMG activities of external abdominal oblique, pectoralis major, and anterior deltoid muscles and elbow joint kinematics were recorded. Our results showed that external abdominal oblique muscle had significantly greater activity in the sling group (
    corecore