
Computing normalisers of highly
intransitive groups

Mun See Chang

This thesis is submitted in partial fulfilment for the degree of
Doctor of Philosophy (PhD)

at the University of St Andrews

December 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/444078093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

We investigate the normaliser problem, that is, given G,H ≤ Sn, compute NG(H).
The fastest known theoretical algorithm for this problem is simply exponential, but
more efficient algorithms are known for some restriction of classes for G and H. In this
thesis, we will focus on highly intransitive groups, which are groups with many orbits.
We give new algorithms to compute NSn(H) for highly intransitive groups H ≤ Sn and
for some subclasses that perform substantially faster than previous implementations in
the computer algebra system GAP.

iii

iv

Acknowledgements

General acknowledgements

My greatest gratitude goes to my two supervisors, Christopher Jefferson and Colva M.
Roney-Dougal, who have tirelessly put up with my many shortcomings and patiently
guide me in my development. Needless to say, the thesis would not exist without their
expert guidance. I would also like to thank my examiners Alexander Hulpke and Peter
Cameron, for their comments and discussions on the thesis. Additionally, I would like
to thank Sergio Siccha for the many discussions on computing normalisers.

Furthermore, I am grateful to the CIRCA members, the Constraint Programming
group, the GAP community and the St Andrews-Halle Permutation Algorithms group
for the advice and discussions. I would also like to thank the administrative teams in
the School of Computer Science and the School of Mathematics and Statistics for their
help and organisation. I appreciate all those who have kept me sane these few years,
with office talks, long lunches and the much-needed coffee and tea breaks. To those
who had to listen to my rants, a massive thank you.

The last round of thanks is reserved for my partner’s and my families, whom I love
dearly, and who have supported and encouraged me throughout the years. This thesis
is dedicated to Dun for empathising and reasoning with me on the countless times I
wanted to quit.

Funding

This work was supported by the University of St Andrews (School of Computer Science
and St Leonard’s College Scholarship).

Research Data/Digital Outputs access statement

Research data underpinning this thesis are available at https://doi.org/10.17630/

710dfd8d-356b-4080-b2ad-c6791b7c21fe [Cha21].

v

https://doi.org/10.17630/710dfd8d-356b-4080-b2ad-c6791b7c21fe
https://doi.org/10.17630/710dfd8d-356b-4080-b2ad-c6791b7c21fe

Candidate's declaration

I, Mun See Chang, do hereby certify that this thesis, submitted for the degree of PhD, which
is approximately 39,000 words in length, has been written by me, and that it is the record of
work carried out by me, or principally by myself in collaboration with others as
acknowledged, and that it has not been submitted in any previous application for any
degree. I confirm that any appendices included in my thesis contain only material permitted
by the 'Assessment of Postgraduate Research Students' policy.

I was admitted as a research student at the University of St Andrews in September 2016.

I received funding from an organisation or institution and have acknowledged the funder(s) in
the full text of my thesis.

Date Signature of candidate

Supervisor's declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and that the
candidate is qualified to submit this thesis in application for that degree. I confirm that any
appendices included in the thesis contain only material permitted by the 'Assessment of
Postgraduate Research Students' policy.

Date Signature of supervisor

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work not
being affected thereby. We also understand, unless exempt by an award of an embargo as
requested below, that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that this thesis will be
electronically accessible for personal or research use and that the library has the right to
migrate this thesis into new electronic forms as required to ensure continued access to the
thesis.

I, Mun See Chang, confirm that my thesis does not contain any third-party material that
requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication of
this thesis:

13/4/2021

msc2
Typewritten text
12/4/2021

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date Signature of candidate

Date Signature of supervisor

13/4/2021

msc2
Typewritten text
12/4/2021

Underpinning Research Data or Digital Outputs

Candidate's declaration

I, Mun See Chang, understand that by declaring that I have original research data or digital
outputs, I should make every effort in meeting the University's and research funders'
requirements on the deposit and sharing of research data or research digital outputs.

Date Signature of candidate

Permission for publication of underpinning research data or digital outputs

We understand that for any original research data or digital outputs which are deposited, we
are giving permission for them to be made available for use in accordance with the
requirements of the University and research funders, for the time being in force.

We also understand that the title and the description will be published, and that the
underpinning research data or digital outputs will be electronically accessible for use in
accordance with the license specified at the point of deposit, unless exempt by award of an
embargo as requested below.

The following is an agreed request by candidate and supervisor regarding the publication of
underpinning research data or digital outputs:

No embargo on underpinning research data or digital outputs.

Date Signature of candidate

Date Signature of supervisor 13/4/2021

msc2
Typewritten text
12/4/2021

msc2
Typewritten text
12/4/2021

Contents

Abstract ii

Acknowledgements iii

Introduction 1

1 Permutation Groups 5

1.1 Group actions . 5

1.2 Constructing groups from groups . 9

1.3 Normal subgroups and normalisers . 10

1.4 Structure of intransitive groups . 12

1.5 Base and strong generating sets . 16

2 Permutation Group Algorithms 19

2.1 Polynomial time algorithms . 19

2.2 Problems not known to be in polynomial time 25

2.3 Backtrack search in permutation groups 28

2.4 The normaliser problem . 35

3 Disjoint Direct Product Decomposition 41

3.1 Background and preliminaries . 43

3.2 Disjoint direct product decomposition 44

3.3 Algorithm . 49

3.4 Experiments . 52

3.5 Conclusion and future work . 55

4 Normalisers of Highly Intransitive Groups 59

4.1 Equivalent orbits . 60

4.2 Disjoint direct product decompositions 62

4.3 Permutation isomorphism of projections 65

4.4 Algorithm . 71

4.5 Results and discussion . 73

ix

x CONTENTS

5 Normalisers of Groups In Class InP(Cp) 75
5.1 Normaliser of H ∈ InP(Cp) and code automorphisms 76
5.2 Complexity results . 81
5.3 Pruning techniques . 93
5.4 Algorithm . 96
5.5 Extension: Groups in class InP(D2p) . 102
5.6 Results . 107

6 Normalisers of Groups In Class InP(T) 111
6.1 Polynomial time library . 111
6.2 Structure of subdirect products of T k . 114
6.3 Normalisers in polynomial time . 117
6.4 Isomorphisms induced by conjugations 120
6.5 Algorithm . 124
6.6 Extension: Groups in class InP(Sm) . 127
6.7 Results . 134

Conclusion 139

Bibliography 141

Introduction

Groups are algebraic objects that arise from the symmetries of combinatorial structures.
Permutation groups, which are groups consisting of permutations (bijections of a set),
are the oldest and most well-studied types of groups. The area of computational group
theory studies algorithms for groups. In this thesis, we will focus on permutation group
algorithms.

Given permutation groups G,H ≤ Sn, the problem of computing the normaliser
NG(H) := {g ∈ G | g−1Hg = H} is called the normaliser problem. Normalisers are
important for analysing group structures and have been used intensively in group con-
structions. Hence it is important to have algorithms with reasonable runtimes. However,
there are currently no known polynomial time algorithms to solve the normaliser prob-
lem in general. The fastest known bound for this problem in general is simply exponen-
tial [Wie19]. Better bounds are known for various cases: for example, quasipolynomial if
H is primitive [RDS20], and polynomial if G has restricted composition factors [LM02].

As a consequence of Babai’s quasipolynomial solution to string isomorphism [Bab16],
the intersection of permutation groups can be computed in quasipolynomial time. So,
with a quasipolynomial cost, it suffices to compute NSn(H), then NG(H) = NSn(H)∩G.
More specifically, we shall focus on the following special case of the normaliser problem.

Problem 0.0.1 (Norm-Sym). Given H = 〈X〉 ≤ Sn, compute NSn(H).

We shall assume that a group H ≤ Sn is given by a generating set X. Since
permutations in Sn are stored as a list of images of {1, 2, . . . , n}, we therefore have an
input size of |X|n. In general we will measure complexity in terms of input size. It is
well known that in time O(|X|n2 +n5), we may replace X with a generating set of size
at most n (see for example [Ser03]). Therefore, we may assume that the generating set
X has size at most n and we shall measure complexity in terms of n.

In [Luk93], Luks shows that the graph isomorphism problem is polynomial time
reducible to Norm-Sym, which is a special case of the normaliser problem. However,
not much more is known about where Norm-Sym fits into the complexity hierarchy.
In particular, we do not know its relation with the string isomorphism problem and
the intersection problem. To better understand its worst case complexity, it is helpful
to study the case where the problem seems to be the hardest. In this thesis, we will
consider highly intransitive groups. More specifically, we compute NSn(H) of a given
group H ≤ Sn with many orbits.

1

2 Introduction

For H ≤ Sn, we say H = H1×H2×. . .×Hr is a disjoint direct product decomposition
of H if it is a direct product decomposition of H and the factors Hi have pairwise
disjoint supports. If H has a non-trivial disjoint direct product decomposition H =

H1 × H2 × . . . × Hr where r > 1, then computing the normaliser NSn(H) is reduced
to computing the normaliser NSym(Supp(Hi))(Hi) for each 1 ≤ i ≤ r and solving the
conjugacy problem for each distinct pair of the factors Hi and Hj . Disjoint direct
product decompositions also have many applications beyond computing normalisers, in
permutation group algorithms and beyond. The first result of this thesis is to show
that the finest disjoint direct product decomposition of a group H = 〈X〉 ≤ Sn can
be computed in polynomial time. As we shall see in the chapter, the algorithm only
manipulates certain strong generating sets, so is very efficient in practice, once the
required strong generating set is obtained.

The fastest implemented algorithm for computing the normaliser NSn(H) in general
is a backtrack search algorithm. In practice, this algorithm is efficient in many classes of
H. One objective of this thesis is to identify classes of H such that computing NSn(H)

is slow in the backtrack algorithm. Two permutation groups H1 and H2 are said to be
permutation isomorphic if they are “the same up to the labelling of points”. The nor-
maliser NSn(H) permutes the H-orbits on which the projections of H are permutation
isomorphic. Therefore we consider the following class of groups.

Definition 0.0.2. Let A ≤ Sm be a transitive group. Let InP(A) be a class con-
sisting of all groups H ≤ Sn with k orbits Ω1,Ω2, . . . ,Ωk and each projection H|Ωi is
permutation isomorphic to A.

There are many practical algorithms to solve special cases of the normaliser prob-
lem NG(H). For example, Holt gave methods for the case H is regular [Hol91], Hulpke
considered the case where H is elementary abelian and produced new methods us-
ing invariant sets [Hul08], and Miyamoto gave new methods using association schemes
[Miy06]. For the Norm-Sym problem, certain structures of H can be used to prune the
search tree. In general, these structures should be efficient to compute and preserved
under conjugation.

A groupH ≤ Sn with orbits Ω1,Ω2, . . . ,Ωk can be regarded as a subdirect product of
H|Ω1×H|Ω2×. . .×H|Ωk . Goursat’s lemma dictates that a subdirect product is uniquely
identified by k normal subgroups of the H|Ωi and k homomorphisms [Sch94, BSZ15].
Using these structures and the aforementioned disjoint direct product decomposition,
we formulate new pruning techniques to compute the normalisers NSn(H) of intransitive
groups H. In an effort to focus on the hardest case, we identify the two classes of H
such that the current techniques do not yield much pruning.

In the first case, we have H ∈ InP(Cp), where Cp ≤ Sp is the cyclic group of prime
degree p. We believe the class InP(Cp) of H is likely to be one of the hardest cases of
the Norm-Sym problem, as the implementation in the computer algebra system GAP
[GAP20] is very slow in solving the Norm-Sym problem for groups in InP(Cp). We

Introduction 3

will show that the Norm-Sym problem for H ∈ InP(Cp) is polynomial equivalent to
computing the monomial automorphism group of a code over Fp. Using methods for
computing automorphisms of linear codes, we give a new faster algorithm for solving
the Norm-Sym problem for H ∈ InP(Cp), and demonstrate that our new algorithm
performs far better than the one currently implemented in GAP. The fastest imple-
mented algorithm to compute NSn(H) has a run time of 2O(n logn). Using methods
based on coding theory, we shall bound the complexity of the Norm-Sym problem for
H ∈ InP(Cp) by min

(
2
O(n

p
log n

p
)
, 2
O(n

2p
logn)

)
, and give an algorithm that performs

efficiently in practice.

The second case that was thought to be hard is where H is in the class InP(T),
where T ≤ Sm is a transitive non-abelian simple group. As a consequence of the
Classification of Finite Simple Groups (see [Gor82, Gor83, ALSS11]), many properties
of a non-abelian simple group are known. Using the fact that |Out(T)| is polynomially
bounded, Luks and Miyazaki showed that the Norm-Sym problem for non-abelian
simple groups H can be computed in polynomial time [LM02]. We shall show that the
Norm-Sym problem for H ∈ InP(T) can also be computed in polynomial time.

With a little extra work, our algorithms are generalised to compute the normalisers
NSn(H) for other classes of H ≤ Sn. We shall show how we can adapt our algorithm
to the case where H ∈ InP(D2p), the class of groups with intransitive projections
permutation isomorphic to dihedral groups of order 2p, where p is an odd prime, and
also to the case where H ∈ InP(Sm), that is the class of groups with intransitive
projections permutation isomorphic to the symmetric group of degree 5 ≤ m 6= 6.

The thesis is structured in the following way. We start with some background mate-
rials on permutation groups in Chapter 1. Section 1.4 is of significant importance, as it
gives certain structures of intransitive groups which we will use throughout the thesis.
In Chapter 2, we will present a polynomial time library and describe some problems
in the Luks hierarchy. We will also describe backtrack search in groups, and present
some literature review on computing normalisers of permutation groups, in terms of
theoretical complexity as well as some practical approaches. In Chapter 3, we will show
that the finest disjoint direct product decomposition of a given permutation group can
be computed in polynomial time. We return our focus to computing normalisers in
Chapter 4, where we give several pruning methods for computing normalisers of highly
intransitive groups using some properties preserved under the conjugations. In Chap-
ter 5, we will consider the groups H ≤ Sn in class InP(Cp). As mentioned earlier, we
will show that we can compute the normaliser NSn(H) for H ∈ InP(Cp) by comput-
ing certain group of automorphisms of a linear code. Using this alternate viewpoint,
we give a faster algorithm to compute the normalisers NSn(H) of groups H ≤ Sn in
this class. We will also see how we use similar methods to improve the normaliser
computation for groups in InP(D2p) for p an odd prime. In Chapter 6, we consider
the groups in class InP(T), where T is non-abelian simple. We will show that we can
compute the normalisers NSn(H) for the groups H ≤ Sn in this class in polynomial

4 Introduction

time, and give an algorithm that also performs competitively in practice. Lastly, we see
how these methods generalise to computing normalisers of groups in class InP(Sm) for
5 ≤ m 6= 6.

Chapter 1

Permutation Groups

In this chapter we will give some elementary concepts and results we will be using in
the later chapters. Most of the results in this chapter can be found in Chapters 1–4 of
[DM96].

Definition 1.0.1. Let Ω be a set. A permutation is a bijection from Ω to itself.
The symmetric group on Ω is the group consisting of all permutations of Ω, denoted by
Sym(Ω). If Ω = {1, 2, . . . , n}, we write Sym(Ω) as Sn.
A permutation group is a subgroup of a symmetric group.

Throughout the thesis, we write permutations as products of disjoint cycles. All
groups considered in the thesis are finite and all permutation groups are acting on finite
sets.

1.1 Group actions

Definition 1.1.1. Let G be a group and let Ω be a non-empty set. Let ξ : G×Ω→ Ω

be a mapping, where we denote the image ξ(x, α) by αx. Then the mapping defines an
action of G on Ω if

1. α1 = α for all α ∈ Ω, where 1 is the identity element of G; and

2. α(xy) = (αx)y for all α ∈ Ω and x, y ∈ G.

If such a ξ exists then we say that G acts on Ω.

Group actions are closely related to permutation representations.

Definition 1.1.2. A homomorphism ρ : G → Sym(Ω) is called a permutation repre-
sentation of G on Ω.

An action of G on a set Ω gives a permutation representation of G. Conversely every
permutation representation corresponds to some action.

5

6 Chapter 1: Permutation Groups

Proposition 1.1.3. 1. Let G be a group acting on a set Ω. For each g ∈ G, let
ḡ : Ω → Ω be defined by α 7→ αg. Let ρ : G → Sym(Ω) be defined by ρ(g) = ḡ.
Then ρ is a permutation representation of G.

2. Let ρ : G → Sym(Ω) be a permutation representation. Define a mapping ξ :

G× Ω→ Ω by (g, α) 7→ αρ(g). Then ξ defines an action of G on Ω,

Proof. Part 1: For g ∈ G, the map ḡ is a bijection since ḡ−1 maps αg to αgg−1
= α. So

ḡ ∈ Sym(Ω). The map ρ is a homomorphism as

αρ(gh) = α(gh) = αgh = (αρ(g))ρ(h), for all α ∈ Ω and g, h ∈ G.

Therefore ρ(gh) = ρ(g)ρ(h).
Part 2: Let ξ : G× Ω→ Ω be defined by (g, α) 7→ αρ(g). As homomorphisms send the
identity to the identity, ξ(1, α) = αρ(1) = α and

αgh = ξ(gh, α) = αρ(gh) = αρ(g)ρ(h) = (ξ(g, α))ρ(h) = (αg)ρ(h) = ξ(h, αg) = (αg)h.

The degree of the action of G on Ω is |Ω|, and the kernel of the action is the kernel
{g ∈ G | ϕ(g) = 1} of the corresponding permutation representation ϕ. We say an
action is faithful if its kernel is trivial, or equivalently, if the corresponding permutation
representation ϕ is injective.

We use permutation equivalence to compare group actions and the corresponding
permutation representations.

Definition 1.1.4. Two permutation representations ρ : G → Sym(Ω) and σ : G →
Sym(Γ) of G are equivalent if there exists a bijection λ : Ω→ Γ such that

λ(αρ(g)) = λ(α)σ(g) for all α ∈ Ω and g ∈ G, (1.1)

and we say λ is a bijection witnessing the equivalence. Two actions are said to be
equivalent if the corresponding permutation representations are equivalent.

Equivalent permutation representations should not be confused with permutation
isomorphism, which captures the permutation groups that are “the same up to rela-
belling of points”.

Definition 1.1.5. Let G ≤ Sym(Ω) and H ≤ Sym(∆). Then G and H are said to be
permutation isomorphic if there exist a bijection φ : Ω → ∆ and a group isomorphism
ψ : G→ H such that

φ(αg) = φ(α)ψ(g) for all α ∈ Ω and g ∈ G, (1.2)

1.1. Group actions 7

and we say φ and ψ is a bijection and an isomorphism witnessing the permutation
isomorphism.

Example 1.1.6. Let G ∼= C2 × C2 and with elements (1, 1), (1, a), (a, 1), (a, a) where
aa = 1. Let ρ : G→ S4 defined by (1, a) 7→ (1, 2) and (a, 1) 7→ (3, 4) be a permutation
representation of G.

1. Let σ : G → S4 defined by (1, a) 7→ (3, 4) and (a, 1) 7→ (1, 2) be a permutation
representation of G. Then ρ and σ are equivalent permutation representations of
G as the bijection λ : {1, 2, 3, 4} → {1, 2, 3, 4} defined by 1 7→ 3, 2 7→ 4, 3 7→ 1

and 4 7→ 2 satisfies Equation (1.1).

2. Now let σ : G→ S4 defined by (1, a) 7→ (1, 2) and (a, 1) 7→ (1, 2)(3, 4) be another
permutation representation of G. There are no such bijection λ as it would require
λ(3) = λ(3(1,2)) = λ(3ρ((a,1))) = λ(3)σ((a,1)) = λ(3)(1,2)(3,4). So ρ and σ are not
equivalent permutation representations of G.

However, in both cases, ρ(G) and σ(G) are permutation isomorphic (they are indeed
the same group).

Observe that two permutation groups on the same set Ω are permutation isomorphic
if and only if they are conjugate subgroups of Sym(Ω).

Proposition 1.1.7. Let H,G ≤ Sym(Ω). Then H and G are permutation isomorphic
if and only if H and G are conjugate in Sym(Ω).
Furthermore, if φ : Ω→ Ω is a bijection witnessing the permutation isomorphism from
H to G, then Hφ = G.

Proof. ⇒: Let φ : Ω → Ω and ψ : H → G be a bijection and an isomorphism that
together witness the permutation isomorphism between H and G, as in Definition 1.1.5.
We shall show that Hφ = G.
Let h ∈ H and let β ∈ Ω. Then there exists α ∈ Ω such that φ(α) = β. Then

β(hφ) = αφφ
−1hφ = αhφ = φ(αh) = φ(α)ψ(h) = βψ(h).

Hence hφ = ψ(h) and so Hφ ≤ ψ(H) = G.
⇐: Let σ ∈ Sym(Ω) such that Hσ = G. Let φ = σ and let ψ : H → G be the
isomorphism defined by ψ(h) = hσ for all h ∈ H. Then for all h ∈ H and α ∈ Ω, we
have

φ(αh) = αhσ = (ασ)σ
−1hσ = φ(α)h

σ
= φ(α)ψ(h).

For a group G acting on a set Ω, each point α ∈ Ω is moved by elements of G to
other points of Ω. These images of α form the orbit of α under G.

8 Chapter 1: Permutation Groups

Definition 1.1.8. Let G be a group acting on Ω and let α ∈ Ω. The orbit of α under
G is the set αG = {αg | g ∈ G} of images of α under G. We call the set of all orbits of
α ∈ Ω under the action of G the orbits of G.

Two orbits of G are either disjoint or equal [DM96, Theorem 1.4A], so the orbits of
G form a partition of Ω. We say that a group G is transitive if G has one orbit Ω and
intransitive otherwise.

We may sometimes want to exclude points that are fixed by an element or a subset
of G. Hence we introduce support and fixed points.

Definition 1.1.9. Let G be a group acting on Ω, and let g ∈ G. The support of
g is the set Supp(g) := {α ∈ Ω | αg 6= α} and the fixed points of g form the set
Fix(g) := {α ∈ Ω | αg = α}.
Let S be a subset of G. The support of S is the set Supp(S) := ∪s∈SSupp(s) and the
fixed points of S form the set Fix(S) := ∩s∈SFix(s).

The dual concept to an orbit is the point stabiliser.

Definition 1.1.10. For a group G acting on a set Ω, the stabiliser of α ∈ Ω in G is
the set Gα = {g ∈ G | αg = α}.

Proposition 1.1.11 ([DM96, Theorem 1.4A]). Let G be a group acting on Ω and let
α, β ∈ Ω and g ∈ G. The following hold.

1. If αg = β, then Gβ = Ggα.

2. (Orbit-stabilizer property) |αG| = |G : Gα|.

The action of G on Ω is regular if G is transitive and Gα = 1 for all α ∈ Ω. By the
orbit-stabiliser property, if G is finite, then the action is regular if and only if |G| = |Ω|.

In terms of stabilisers of a set, we differentiate between the pointwise and the setwise
stabilisers.

Definition 1.1.12. Let G be a group acting on Ω and let ∆ ⊆ Ω. The pointwise
stabiliser of ∆ in G is the subgroup G(∆) = {g ∈ G | αg = α for all α ∈ ∆}. The
setwise stabiliser of ∆ in G is the subgroup G{∆} = {g ∈ G | αg ∈ ∆ for all α ∈ ∆}.

A group G acting transitively on Ω may preserve an (unordered) partition of Ω,
which will give blocks of imprimitivity.

Definition 1.1.13. Let G be a group acting transitively on Ω. Then ∆ ⊆ Ω is a block
for G if for every g ∈ G, either ∆g = ∆ or ∆ ∩∆g = ∅.
If ∆ is a block then the set {∆g | g ∈ G} is a partition of Ω, called a system of blocks
for G.

The set of singleton subsets of Ω forms a system of blocks of imprimitivity for G.
Similarly, Ω is a block for G. We call these blocks trivial blocks. A transitive group is
said to be imprimitive if it has non-trivial blocks, and is said to be primitive otherwise.

Finally observe that the orbits of a normal subgroup give a system of blocks.

1.2. Constructing groups from groups 9

Proposition 1.1.14 ([DM96, Theorem 1.6A]). Let G be a group acting transitively on
Ω and let N E G be a normal subgroup of G. Then the orbits of N form a system of
blocks for G.

1.2 Constructing groups from groups

We begin with the product of subgroups.

Definition 1.2.1. Let G be a group and let H and K be subgroups of G. Then the
product of subgroups H and K is the set HK := {hk | h ∈ H and k ∈ K}.

The set HK need not be a subgroup of G, but it is if either H or K are normal in
G. If G = HK, we say that K is a supplement of H in G. If G = HK and H ∩K = 1,
we say that K is a complement of H in G. If G = HK, H ∩K = 1 and both K and H
are normal in G, then G is the (internal) direct product of H and K.

Definition 1.2.2. Let G and H be groups. Then the direct product G×H of G and H
is the group with elements {(g, h) | g ∈ G, h ∈ H} together with the component-wise
binary operation.

The direct product defined above is an external one. Note that for each external
direct product there is a corresponding internal direct product.

Remark 1.2.3. Let G and H be groups and let K := G × H. Then G = G × 1 and
H = 1 ×H are normal subgroups of K with trivial intersection and any element k of
K can be written uniquely as a product k = gh, where g ∈ G and h ∈ H. So K is an
internal direct product of G and H.

Associated to direct products are the projection maps.

Notation 1.2.4. Let G1, G2, . . . , Gk be groups and let G = G1 × G2 × . . . × Gk. We
denote by πi the projection of G onto Gi. So for g = (g1, g2, . . . , gk) ∈ G, we have
πi(g) = gi.
For I ⊆ {1, 2, . . . , k}, we denote by ΠI the projection onto I, so ΠI(g) = (gi1 , gi2 , . . . , gir),
where i1, i2, . . . , ir are the elements of I in the natural ordering.

The projection maps are homomorphisms. The surjectivity of the projections πi
gives the definition of a subdirect product.

Definition 1.2.5. Let G1, G2, . . . , Gk be groups and let G = G1 × G2 × . . . × Gk. A
subgroup H of G is a subdirect product of G if the projections πi : H → Gi are surjective
for all 1 ≤ i ≤ k.

Therefore we may regard an intransitive group as a subdirect product of the direct
products of the projections on its orbits.

10 Chapter 1: Permutation Groups

Proposition 1.2.6. Let H ≤ Sn and let Ω1,Ω2, . . . ,Ωk be the orbits of H. Then H is
a subdirect product of H|Ω1 ×H|Ω2 × . . .×H|Ωk , where we identify the direct product as
a subgroup of Sn.

We will further discuss the structure of intransitive groups in Section 1.4.
A generalisation of direct product is the semidirect product.

Definition 1.2.7. Let H and K be groups and let H act on K. The (external) semidi-
rect product of H by K is the group K oH := {(k, h) | k ∈ K and h ∈ H} where the
products are defined by

(k1, h1)(k2, h2) = (k1k
h−1

1
2 , h1h2)

for all k1, k2 ∈ K and h1, h2 ∈ H.

Example 1.2.8. Let H ≤ G and K /G such that G = HK and K ∩H = 1. Then any
element g of G can be written as kh, for some k ∈ K and h ∈ H. Since K = Kg = Kkh,
we have Kh = K. So H acts on K by conjugation. Let g1 = k1h1 and g2 = k2h2

be elements of G, then g1g2 = k1h1k2h2 = k1h1k2h
−1
1 h1h2 = k1k

h−1
1

2 h1h2. Therefore
G ∼= K oH.

Finally, a wreath product is a special case of a semidirect product.

Definition 1.2.9. Let K,H be groups and let H act on a non-empty finite set Γ. Let
L ∼= K |Γ| be the direct product K1 × K2 × . . . × K|Γ| of |Γ| copies of K. The wreath
product K oΓ H of K by H is the semidirect product LoH, where the action of H on
K |Γ| is defined by khi = k

ih−1 for all h ∈ H and ki ∈ Ki.

The subgroup L of K oΓH is called the base group of the wreath product. We denote
the case where H is given as a permutation group in Sym(Γ) simply as K oH instead
of K oΓ H, which we call the standard wreath product.

The wreath product is strongly connected to imprimitive groups. For groups K and
H acting on ∆ and Γ respectively, the wreath product K o H acts imprimitively on
∆× Γ. Conversely, any imprimitive group can be embedded into a wreath product.

Proposition 1.2.10 ([Cam99, Theorem 1.8]). Let G ≤ Sym(Ω) be imprimitive with
blocks ∆1,∆2, . . . ,∆k. Let K ≤ Sk be the group induced by the action of G on the ∆i.
Then G can be embedded into the wreath product G{∆1}|∆1 oK.

Note that K oΓH also acts (primitively) on the cartesian product of |Γ| copies of ∆.
This action is called the product action of the wreath product.

1.3 Normal subgroups and normalisers

In this section we give some elementary results relating to normal subgroups and nor-
malisers.

1.3. Normal subgroups and normalisers 11

Definition 1.3.1. Let G be a group. A minimal normal subgroup of G is a non-trivial
normal subgroup N of G such that there are no non-trivial normal subgroups K of G
such that K $ N .

Lemma 1.3.2 ([DM96, Theorem 4.3A]). Let G be a finite group. Let K be a minimal
normal subgroup of G and let L E G with K 6= L. Then either K ≤ L or 〈K,L〉 = K×L.
Hence if L is also a minimal normal subgroup of G, then 〈K,L〉 = K × L.

The socle of a group plays an integral role in understanding primitive groups.

Definition 1.3.3. Let G be a group. The socle of G is the group soc(G) generated by
all minimal normal subgroups of G.

Proposition 1.3.4 ([DM96, Theorem 4.3A]). Let G be a non-trivial finite group. Then

1. There exist minimal normal subgroups N1, N2, . . . , Nk of G such that soc(G) =

N1 ×N2 × . . .×Nk.

2. If N is a minimal normal subgroup of G, then N is a direct product of simple
normal subgroups of N which are conjugate in G.

We now turn our attention to normalisers of groups. For G,H ≤ Sn, we denote by
NG(H) the normaliser of H in G. We prove the following elementary but useful lemma.

Lemma 1.3.5 ([Ser03, Lemma 6.1.7]). Let H ≤ Sym(Ω). Then NSym(Ω)(H) permutes
the H-orbits.

Proof. Let g ∈ NSym(Ω)(H). Let α, β ∈ Ω be points in the same H-orbit. Then there
exists h ∈ H mapping α to β. So h′ := hg is an element of H and (αg)h

′
= αgg

−1hg = βg.
Therefore αg and βg are in the same H-orbit. Similarly, g maps points in different orbits
to points in different orbits.

The normaliser of H is closely related to the automorphism group of H.

Definition 1.3.6. For a group G, the automorphism group Aut(G) of G is the set of
all isomorphisms α : G→ G under composition of maps.

An automorphism α ∈ Aut(G) of G is an inner automorphism if it is induced by
the conjugation by an element h ∈ G. That is, there exists h ∈ G such that gα = gh

for all g ∈ G. Otherwise α is said to be an outer automorphism of G. The inner
automorphism group Inn(G) of G is the group consisting of all inner automorphisms of
G, and is normal in Aut(G). The outer automorphism group of G is the quotient group
Out(G) = Aut(G)/Inn(G).

We prove the following well-known theorem. Note that since gν ∈ G for all g ∈ G
and ν ∈ NSn(G), the element ν induces an automorphism of G.

12 Chapter 1: Permutation Groups

Theorem 1.3.7. Let G ≤ Sn. Let φ : NSn(G)→ Aut(G) be such that φ(ν) = ν, where ν
denotes the element of Aut(G) induced by conjugation by ν. Then φ is a homomorphism
with Ker(φ) = CSn(G). Hence NSn(G)/CSn(G) is isomorphic to a subgroup of Aut(G).

Proof. The map φ is a homomorphism as gφ(ν1ν2) = g(ν1ν2) = (gφ(ν1))ν2 = gφ(ν1)φ(ν2) for
all ν1, ν2 ∈ NSn(G) and g ∈ G. To show Ker(φ) = CSn(G), observe that ν ∈ NSn(G) is
in Ker(φ) if and only if φ(ν) = 1. That is, for all g ∈ G, we have gν = gφ(ν) = g, which
is the condition for ν to be an element of CSn(G).

Definition 1.3.8. Let G be a group. A characteristic subgroup H of G is a subgroup
H ≤ G where all automorphisms α ∈ Aut(G) of G map H back to itself. That is,
Hα = H for all α ∈ Aut(G).

If H ≤ G is a characteristic subgroup, each element ν of NSn(G) induces an auto-
morphism ν of G, and so Hν = Hν = H. Therefore the normaliser NSn(G) is contained
in NSn(H). Note that as automorphisms of G permute the minimal normal subgroups
of G, the socle soc(G) is a characteristic subgroup of G.

Lastly, we show how certain automorphisms of G can be used to generate NSn(G).

Lemma 1.3.9. Let G ≤ Sn. Let R be a transversal of Inn(G) in Aut(G). For each
ω ∈ R, if there exists x ∈ Sn such that hω = hx for all h ∈ G, let xω be one such
element, and let X be the set of all such elements (at most one xω for each ω). Then
NSn(G) = 〈CSn(G), G,X〉.

Proof. ≥: Certainly CSn(G) and G are contained in NSn(G). Let xω ∈ X and h ∈ G.
Then hxω = hω ∈ G. So xω ∈ NSn(G).
≤: Let φ : NSn(G) → Aut(G) map each ν ∈ NSn(G) to the element ν of Aut(G)

induced by conjugation by ν. By Theorem 1.3.7, φ is a homomorphism with kernel
CSn(G).
Let ν ∈ NSn(G). Since φ(ν) ∈ Aut(G), there exists ι ∈ Inn(G) and ω ∈ R such that
φ(ν) = ιω. We denote by φ−1(R) the set {φ−1(r) | r ∈ R}, where φ−1(r) is an element
η of NSn(G) such that φ(η) = r. Since Ker(φ) = CSn(G), we have

ν ∈ 〈φ−1(Inn(G)), φ−1(R), CSn(G)〉.

By the definition of φ, we have φ(G) = Inn(G), so φ−1(Inn(G)) = 〈G,CSn(G)〉. Simi-
larly, φ(X) = R, so φ−1(R) = 〈X,CSn(G)〉. Hence, ν ∈ 〈CSn(G), G,X〉.

1.4 Structure of intransitive groups

This thesis will focus on computing the normalisers of intransitive groups. Recall from
Proposition 1.2.6 that an intransitive group can be regarded as a subdirect product of
its transitive constituents. Theorem 1.4.1 is commonly known as Goursat’s lemma. It
describes the subgroups of a direct product and appears in the literature in various
places, including, for example, [Sch94, PS18].

1.4. Structure of intransitive groups 13

Theorem 1.4.1 ([Gou89]). Let G1, G2 be groups. Let H be a subdirect product of
G1 × G2. Let π1 : H → G1 and π2 : H → G2 be the projection maps of H onto G1

and G2 respectively. Let N1 := π1(Ker(π2)) and N2 := π2(Ker(π1)). Then the following
hold.

1. N1 E G1 and N2 E G2.

2. G1/N1 is isomorphic to G2/N2, with isomorphism θ given by N1h1 7→ N2h2 where
(h1, h2) ∈ H.

Let R1 and R2 be transversals of N1 in G1 and N2 in G2 respectively. Let θ̂ :

R1 → R2 be a map induced by θ, where θ̂(r1) = r2 if θ(N1r1) = N2r2. Then letting
G = {(r, θ̂(r)) | r ∈ R1}, we have H = 〈G, N1 × 1, 1×N2〉.

For subdirect products of the direct product of more than two groups, we use an
asymmetrical version of Theorem 1.4.1.

Proposition 1.4.2 ([BSZ15, Theorem 2.3]). Let G1, G2 be groups. Let H be a subdirect
product of G1 × G2. Let π1 : H → G1 and π2 : H → G2 be the projection maps of H
onto G1 and G2 respectively. Then the following hold.

1. Let N2 := π2(Ker(π1)). Then N2 E G2.

2. Let θ : G1 → G2/N2 be defined by h1 7→ N2h2 for all (h1, h2) ∈ H. Then θ is a
surjective homomorphism.

3. Let R2 be a transversal of N2 in G2. Then by letting G = {(g1, r2) | g1 ∈ G1, r2 ∈
R2 such that θ(g1) = N2r2}, we have H = 〈G, 1×N2〉.

We shall denote the set {1, 2, . . . , i} by i. Let G1, G2, . . . , Gk be groups. Now,
consider a subdirect product H of G1×G2× . . .×Gk. For a subset I = {i1, i2, . . . , ir} ⊆
k, we use ΠI to denote the projection map of H onto Gi1 × Gi2 × . . . × Gir , as in
Notation 1.2.4.

By iteratively considering Πi+1(H) as a subdirect product of Πi(H)×Gi+i, we get
the following result. Since we will be using this result repeatedly, we present the proof
here. Theorem 1.4.3 will be referenced in many places throughout the thesis.

Theorem 1.4.3 ([BSZ15, Theorem 3.2]). Let G1, G2, . . . , Gk be groups. Let H be a
subdirect product of G1 ×G2 × . . .×Gk. Then for 1 ≤ i ≤ k − 1, the following hold.

1. Let Ni+1 := πi+1(Ker(Πi)) = {πi+1(h) ∈ Gi+1 | h ∈ H and Πi(h) = 1}. Then
Ni+1 E Gi+1.

2. Let θi : Πi(H) → Gi+1/Ni+1 be defined by Πi(h) 7→ Ni+1πi+1(h). Then θi is a
surjective homomorphism.

14 Chapter 1: Permutation Groups

3. Let Ri+1 be a transversal of Ni+1 in Gi+1 and let

ϕi : Πi(H) → Πi(H)×Ri+1

Πi(h) 7→ (Πi(h), r) if θi(Πi(h)) = Ni+1r, with r ∈ Ri+1.

Then Πi+1(H) = 〈ϕi(Πi(H)), 1× . . .× 1︸ ︷︷ ︸
i times

×Ni+1〉.

Proof. Part 1: Let n ∈ Ni+1. Then there exists h1 ∈ H such that Πi(h1) = 1 and
n = πi+1(h1). Let g ∈ Gi+1. Since πi+1 is surjective, there exists h2 ∈ H such that
πi+1(h2) = g. Then Πi(h

h2
1) = 1, so ng = πi+1(hh2

1) ∈ Ni+1.

Part 2: First we show that θi is well-defined. Let h1 and h2 be elements of H such
that Πi(h1) = Πi(h2). Then Πi(h1h

−1
2) = 1, and so πi+1(h1h

−1
2) ∈ Ni+1. Since

πi+1 is a homomorphism, it follows that θi(Πi(h1)) = Ni+1πi+1(h1) = Ni+1πi+1(h2) =

θi(Πi(h2)).
To show that θi is a homomorphism, let h1, h2 ∈ H. Then

θi(Πi(h1)Πi(h2)) = θi(Πi(h1h2)) = Ni+1πi+1(h1h2)

= (Ni+1πi+1(h1))(Ni+1πi+1(h2))

= θi(Πi(h1))θi(Πi(h2)).

To show that θi is surjective, observe that since H is a subdirect product, for each coset
Ni+1g, there exists h ∈ H such that πi+1(h) ∈ Ni+1g. Therefore the image θi(Πi(h)) is
Ni+1πi+1(h) = Ni+1g.

Part 3: ≥: Let n ∈ Ni+1, then there exists h ∈ H such that Πi(h) = 1 and πi+1(h) = n.
So (1, . . . , 1, n) ∈ Πi+1(H) and hence 1× . . .× 1︸ ︷︷ ︸

i times

×Ni+1 ≤ Πi+1(H).

Let g ∈ ϕi(Πi(H)). Then there exists h1 ∈ H and r ∈ Ri+1 such that g = (Πi(h1), r)

and θi(Πi(h1)) = Ni+1r. Let h2 ∈ H be such that Πi(h1) = Πi(h2). Then

gΠi+1(h2)−1 = (1, rπi+1(h2)−1) ≤ 1× . . .× 1︸ ︷︷ ︸
i times

×Ni+1 ≤ Πi+1(H).

So g ∈ Πi+1(H).
≤: Let h ∈ H. Let K := 〈ϕi(Πi(H)), 1× . . .× 1︸ ︷︷ ︸

i times

×Ni+1〉. Let r ∈ Ri+1 be such that

Ni+1r = Ni+1πi+1(h). Then (Πi(h), r) ∈ ϕi(Πi(H)) ⊆ K and

Πi+1(h)(Πi(h), r)−1 = (1, πi+1(h)r−1) ∈ 1× . . .× 1︸ ︷︷ ︸
i times

×Ni+1 ≤ K.

So Πi+1(h) ∈ K.

We require that we always have 1 ∈ Ri+1. We use Proposition 1.2.6 and Theo-
rem 1.4.3 to describe the structure of intransitive groups.

1.4. Structure of intransitive groups 15

Corollary 1.4.4. Let H ≤ Sym(Ω) and let Ω1,Ω2, . . . ,Ωk be the orbits of H. For
1 ≤ i ≤ k, let ∆i = ∪j≤iΩj. Then for 1 ≤ i ≤ k − 1, the following hold.

1. Let Ni+1 := (H(∆i))|Ωi+1. Then Ni+1 E H|Ωi+1.

2. Let θi : H|∆i → (H|Ωi+1)/Ni+1 be defined by h|∆i 7→ Ni+1(h|Ωi+1) for all h ∈ H.
Then θi is a surjective homomorphism.

3. Let Ri+1 be a transversal of Ni+1 in H|Ωi+1. By considering Sym(∆i) and
Sym(Ωi+1) as subgroups of Sym(∆i+1), let

ϕi : H|∆i → Sym(∆i+1)

h|∆i 7→ h|∆ir if r ∈ Ri+1 and θi(h|∆i) = Ni+1ri+1.

Let Ni+1 denote the subgroup of Sym(∆i+1) with support Ωi+1 such that
Ni+1|Ωi+1 = Ni+1. Then H|∆i+1 = 〈ϕi(H|∆i), Ni+1〉.

Since the preceeding theorem is rather technical, we give an example.

Example 1.4.5. Let x1 := (1, 2, 3)(7, 9, 8)(10, 12, 11), x2 := (4, 5, 6)(7, 8, 9)(10, 11, 12),
x3 := (5, 6)(8, 9)(11, 12) and x4 := (7, 8, 9)(10, 11, 12). Let H := 〈x1, x2, x3, x4〉 ≤ S12.
Then Ω1 = {1, 2, 3}, Ω2 = {4, 5, 6}, Ω3 = {7, 8, 9} and Ω4 = {10, 11, 12} are the orbits
of H. For 1 ≤ i ≤ 4, let Gi = H|Ωi . Then H is a subdirect product of G1×G2×G3×G4,
where we identify the direct product as a subgroup of S12.
For 1 ≤ i ≤ 4, let ∆i := ∪j≤iΩj . Then H(∆2) = 〈(7, 8, 9)(10, 11, 12)〉. Let N3 be as in
Corollary 1.4.4, we see that N3 = 〈(7, 8, 9)〉 is normal in G3.
Let θ2 : H|∆2 → G3/N3 be as in Corollary 1.4.4. Then θ2(x1|∆2) = θ2((1, 2, 3)) =

θ2(x2|∆2) = θ2((4, 5, 6)) = N3 and θ2(x3|∆2) = θ2((5, 6)) = N3(8, 9). So θ2 is surjective.
Let R3 := {(), (8, 9)} be a transversal of N3 in G3. Let ϕ2 be as in Corollary 1.4.4.
Then ϕ2(H|∆2) = 〈(1, 2, 3), (4, 5, 6), (5, 6)(8, 9)〉, and one could check that indeed we
have 〈ϕ2(H|∆2), 1∆2 ×N3〉 = H|∆3 .

Lastly, note an elementary corollary of Corollary 1.4.4.

Corollary 1.4.6. Let H ≤ Sym(Ω) and let Ω1,Ω2, . . . ,Ωk be the orbits of H. Let
1 ≤ i ≤ k − 1.

1. If (H(∆i))|Ωi+1 = H|Ωi+1, then H|∆i+1 = H|∆i × H|Ωi+1, where we identify the
direct product as a subgroup of Sym(∆i+1).

2. If (H(∆i))|Ωi+1 = 1, then H|∆i+1 = {h′θi(h′) | h′ ∈ h|∆i}.

Proof. Part 1: Using the notation of Corollary 1.4.4, we have Ni+1 = H|Ωi+1 , and so
Im(θi+1) = 1. Then by taking Ri+1 = {1}, the image ϕi(H|∆i) has support ∆i. So
ϕi+1(H|∆i) = H|∆i . Therefore H|∆i+1 = 〈H|∆i , H|Ωi+1〉. Since H|∆i and H|Ωi+1 have
disjoint supports, we have H|∆i+1 = H|∆i ×H|Ωi+1 .
Part 2: This follows from Corollary 1.4.4 since Ni+1 = 1.

16 Chapter 1: Permutation Groups

1.5 Base and strong generating sets

The base and strong generating set of a permutation group G are important for com-
puting with G. In fact, many permutation group algorithms start with computing a
base and a corresponding strong generating set. In this section, we introduce some basic
definitions. We will see how bases and strong generating sets can be used to compute
with permutation groups later in Chapter 2.

Definition 1.5.1. Let G ≤ Sym(Ω). A base B of G is a tuple (β1, β2, . . . , βm) ∈ Ωm

such that the pointwise stabiliser G(β1,β2,...,βm) = 1. A base is said to be non-redundant
or irredundant if each G(β1,β2,...,βi+1) is a proper subgroup of G(β1,β2,...,βi).
Let g ∈ G. The base image of g relative to a base B is the tuple Bg := (βg1 , β

g
2 , . . . , β

g
m).

If two elements g, h ∈ G have the same base image then gh−1 fixes B and so is
trivial. Therefore the base image Bg of g uniquely determines g ∈ G. This means that
elements of G can be represented by |B|-tuples over Ω.

A base of G defines a subgroup chain of G.

Definition 1.5.2. A stabiliser chain defined by a base B = (β1, β2, . . . , βm) of G is a
subgroup chain

1 = G[m+1] ≤ G[m] ≤ . . . ≤ G[2] ≤ G[1] = G,

where each G[i] = G(β1,β2,...,βi−1) is the pointwise stabiliser of the first i− 1 base points.

A strong generating set is a special type of generating set where the elements that
lie in the stabiliser G[i] form a generating set for G[i]. Therefore we may extract the
groups in the stabiliser chain from a strong generating set.

Definition 1.5.3. A generating set S of G ≤ Sym(Ω) relative to a base B is called a
strong generating set if 〈S ∩G[i]〉 = G[i] for 1 ≤ i ≤ m+ 1.

We call the orbits βG[i]

i the fundamental orbits of G. For each point in the orbit, it
is often useful to store an element in G[i] which maps βi to that point. These elements
form a transversal Ri for G[i+1] in G[i]. Each transversal Ri is stored in a structure
called a Schreier tree.

Definition 1.5.4. A Schreier tree of G ≤ Sym(Ω) rooted at α ∈ Ω is a directed tree
with root α, where its vertices are labelled by elements of the orbit αG. Each edge is
directed from a point γ ∈ Ω at depth m to some point β ∈ Ω at depth m − 1, and is
labelled with a group element g ∈ G such that γg = β.

Let α, β ∈ Ω be distinct points in the same orbit of G. Let T be a Schreier tree of G
rooted at α and let g be the product of the labels of the path from β to α in T . Then
g−1 is an element of G which maps α to β.

We will see in Theorem 2.1.7 that a base and strong generating set of a group can be
computed in polynomial time, which requires polynomial time construction of Schreier

1.5. Base and strong generating sets 17

trees. In Section 2.1.2, we shall see how the polynomial time computation of base and
strong generating sets leads to other polynomial time algorithms. Then in Section 2.3,
we shall see how the base and strong generating sets give us means to systematically
search in a group.

18 Chapter 1: Permutation Groups

Chapter 2

Permutation Group Algorithms

In this chapter, we will introduce some permutation group algorithms. In Section 2.1,
we will present some elementary polynomial time results. In Section 2.2, we state some
problems that have no known polynomial time solution and present the complexity hi-
erarchy of these problems. In practice, we solve these problems using backtrack search,
which we shall describe in Section 2.3. Lastly, in Section 2.4, we consider the nor-
maliser problem and discuss the problem in terms of its complexity and its practical
computation.

2.1 Polynomial time algorithms

In this section, we present some polynomial time results we will use in later chapters.
We will assume that any permutation group G ≤ Sn is given by a generating set X of
G. This gives an input size of O(|X|n)1, so a polynomial time algorithm should have
complexity O((|X|n)c) for some constant c.

Theorem 2.1.1 ([Ser03, Theorem 10.1.3]). Let H = 〈X〉 ≤ Sn. Then we may replace
X with a generating set of size at most n in time O(|X|n2 + n5).

Therefore we may assume that all given generating sets have size at most n and
measure complexity in terms of n.

Recall base and strong generating set from Definitions 1.5.1 and 1.5.3. Many per-
mutation group algorithms require the computation of a base and a strong generating
set relative to it. We start by giving some polynomial time results which do not require
a base and strong generating set.

Proposition 2.1.2 ([Ser03, Theorem 2.1.1], [Atk75]). Given G = 〈X〉 ≤ Sn, then in
polynomial time, we can

1. compute the G-orbits;

2. decide if G is primitive and if not, output a non-trivial block system.
1We follow the convention in [Ser03] where we do not count the O(logn) representation of integers

i ≤ n.

19

20 Chapter 2: Permutation Group Algorithms

2.1.1 The sifting procedure

Recall the definition of a Schreier tree from Definition 1.5.4. Let G ≤ Sym(Ω) and let
B := (β1, β2, . . . , βm) ∈ Ωm be a base of G. Recall from Definition 1.5.2 the subgroups
G[i] for all 1 ≤ i ≤ m+ 1. For 1 ≤ i ≤ m, let Ri be a transversal of G[i+1] in G[i]. Then
the Schreier tree of G[i] rooted at βi can be used to compute Ri. These Schreier trees
can be computed in polynomial time.

Theorem 2.1.3 ([BCFS91, CF94]). Let G = 〈X〉 ≤ Sym(Ω) and let α ∈ Ω. Then

1. there exists a deterministic algorithm which computes a Schreier tree of depth at
most 2 log |G| for the transversal of Gα in G in O(n log2 |G|+ |X|n) time, and

2. there exists a randomised algorithm which, with probability at least 1− |αG|−0.29c,
computes a Schreier tree of depth at most 2 log |αG|+ 4 for the transversal of Gα
in G using c(8 log |αG|+ 16) random elements, where c > 1.

The Schreier tree is useful in testing if a given permutation h ∈ Sn is in a group
G ≤ Sn. First observe that any element g ∈ G can be uniquely written as a product
g = rmrm−1 . . . r1, where each ri ∈ Ri. These ri can be determined by a procedure
called sifting.

Definition 2.1.4. Let h be a given permutation in Sn. The sifting of h by G is as
follows. We initialise g1 := h. For 1 ≤ i ≤ m, we recursively find ri ∈ Ri such that
βrii = βgii , and setting gi+1 := gir

−1
i . The procedure terminates when either

1. 1 ≤ s ≤ m and there are no rs ∈ Rs such that βrss = βgss , or

2. s = m+ 1 and we have computed gs.

In both cases, gs is a siftee of h by G.

We may conclude that h ∈ G if we get a siftee gm+1 = 1. Observe that for 1 ≤ i ≤
s − 1, the permutation gi+1 fixes βi. Then as βi is fixed by all Rj for j ≥ i, a siftee
gs = gr−1

1 r−1
2 . . . r−1

s−1 also fixes βi.
We give an example of the sifting procedure. In the example, we will write bases

with square brackets to differentiate between bases and permutations.

Example 2.1.5. Let X := {(1, 2, 3, 4, 5), (2, 5)(3, 4)} and G := 〈X〉. Then X is a
strong generating set of G relative to base B := [1, 2]. Let R1 := {1, (1, 5, 4, 3, 2),

(1, 4, 2, 5, 3), (1, 2)(3, 5), (1, 3, 5, 2, 4)} and R2 := {1, (2, 5)(3, 4)} be the transversals for
G(1) in G and for G(1,2) in G(1) respectively. Consider sifting h = (1, 2, 4, 5) by G.
Initialise g1 := h. Then r1 := (1, 2)(3, 5) is an element of R1 mapping 1 to 1g1 = 2. So
g2 = g1r

−1
1 = (2, 4, 3, 5). Now there is no r2 ∈ R2 mapping 2 to 2g2 = 4. Therefore we

get a siftee (2, 4, 3, 5).

Lastly we show that we can determine if a given tuple is a base image in polynomial
time.

2.1. Polynomial time algorithms 21

Lemma 2.1.6. Let G = 〈X〉 ≤ Sym(Ω) and let B = (β1, β2, . . . , βm) be a base of G.
Given a tuple A = (α1, α2, . . . , αm) ∈ Ωm, in polynomial time, we can determine if A
is a base image of B in G and if so, output g ∈ G such that Bg = A.

Proof. For 1 ≤ i ≤ m, let Ri be a transversal of G[i+1] in G[i], which can be computed
in polynomial time by Theorem 2.1.3. Find r1 ∈ R1 such that βr11 = α1 and set g1 = r1.
Then for 2 ≤ i ≤ m, recursively find ri ∈ Ri such that βrigi−1

i = αi and let gi = rigi−1,
or return fail if such an ri does not exists. Then gm = rmrm−1 . . . r1 is an element of
G. Since each ri+1 fixes each of β1, β2, . . . , βi, we have

βgmi = β
rmrm−1...rigi−1

i = β
rigi−1

i = αi,

for all 1 ≤ i ≤ m. Therefore Bgm = A. If we fail to compute gm then there is no g ∈ G
such that Ag = G. Since each |Ri| ≤ |Ω|, the algorithm runs in polynomial time.

2.1.2 Schreier-Sims algorithm and its consequences

The Schreier-Sims algorithm computes a irredundant base and corresponding strong
generating set of a given groupG ≤ Sn. We will not describe the Schreier-Sims algorithm
here, but note that it has polynomial time complexity.

Theorem 2.1.7 ([Ser03, Theorem 4.2.4]). Let G = 〈X〉 ≤ Sn. Then a base and
a strong generating set for G can be computed in O(n2 log3 |G| + |X|n2 log |G|) time
using O(n2 log |G|+ |X|n) memory. Alternatively, a strong generating set for G can be
computed in time O(n3 log3 |G|+|X|n3 log |G|) time using O(n log2 |G|+|X|n) memory.

A Monte Carlo algorithm is a randomised algorithm that will produce a wrong
answer with a small probability, while a Las Vegas algorithm is a randomised algorithm
that will always output the correct results but may fail. In practice, implementations
of the Schreier-Sims algorithm use the randomised version.

Theorem 2.1.8 ([Ser03, Theorem 4.5.5]). Let G = 〈X〉 ≤ Sn. Then there exists a
Monte Carlo algorithm for computing a base and a strong generating set for G in time
O(n log n log4 |G| + |X|n log |G|) and space O(n log |G| + |X|n), with a probability of
error less that 1/nd, for a constant d.

As a consequence of a polynomial time computation of bases and strong generating
sets, we get the following polynomial time results.

Theorem 2.1.9. Let G = 〈X〉 be a subgroup of Sym(Ω) where |Ω| = n. Let B ∈ Ωm

be a base of G. Then the following can be done in polynomial time.

1. Compute the order |G|.

2. Given h ∈ Sn, compute a siftee of h by G, and decide if h ∈ G.

3. Given ∆ ⊆ Ω, compute the pointwise stabiliser G(∆).

22 Chapter 2: Permutation Group Algorithms

Let φ : G→ Sym(∆) be a map given by the images of X.

4. Decide if φ defines a homomorphism.

5. Decide if φ defines an isomorphism.

6. Decide if φ defines an automorphism.

Let ϕ : G→ Sym(∆) be a homomorphism given by the images of X.

7. Compute Ker(ϕ).

8. Compute ϕ(g) for a given g ∈ G.

9. Find g ∈ G such that ϕ(g) = h for a given h ∈ Im(ϕ).

For Part 1, let B be a non-redundant base of G. Then by repeated application of the
orbit-stabiliser theorem, |G| =

∏m
i=1 |G(β1,...,βi−1) : G(β1,...,βi)|. Part 2 is in polynomial

time by using the sifting procedure described in Section 2.1.1. Parts 3, 4 and 7 to 9
are discussed in [Ser03, Sections 5.1.1 & 5.1.2]. For Part 5, φ gives an isomorphism if
φ defines a homomorphism and |Im(ϕ)| = |〈φ(x) | x ∈ X〉| = |G|. For Part 6, we check
that φ defines an isomorphism, and that φ(x) ∈ G for all x ∈ X.

2.1.3 Equivalent orbits and centralisers

It is well known that the centraliser CSn(G) of a group G ≤ Sn can be computed in
polynomial time [CFL89]. In this section, we will introduce orbit equivalence, which
plays a crucial role in computing centralisers of intransitive groups. We will see how
equivalent orbits can be used for normaliser calculations in later chapters. For the rest
of the section, we will take the natural inclusion of Sym(∆) into Sym(Ω), for all subsets
∆ of Ω.

Definition 2.1.10. Two orbits Ωi,Ωj ofH ≤ Sn are equivalent if there exists a bijection
ψ : Ωi → Ωj such that for all h ∈ H and δ ∈ Ωi, we have ψ(δh) = ψ(δ)h. We denote
this by Ωi ≡o Ωj , and say that ψ witneses the equivalence.

Let Ωi and Ωj be H-orbits. By taking ρ and σ in Definition 1.1.4 to be the restric-
tions of H to Ωi and Ωj respectively, we see that Ωi ≡o Ωj if and only if the actions of
H on Ωi and Ωj are equivalent.

Notation 2.1.11. Let ϕ : Ωi → Ωj be a bijection for some 1 ≤ i, j ≤ k. We denote by
ϕ the involution g in Sn with support Ωi ∪ Ωj such that αϕ = ϕ(α).

We will often use the following result to detect equivalent orbits.

Lemma 2.1.12. Let Ωi and Ωj be orbits of H ≤ Sym(Ω). Then Ωi ≡o Ωj if and only
if there exists an involution g ∈ Sym(Ω) with support Ωi ∪ Ωj such that

h|Ωj = (h|Ωi)g for all h ∈ H, (2.1)

2.1. Polynomial time algorithms 23

where we identify Sym(Ωi) and Sym(Ωj) with subgroups of Sn.

Proof. ⇒: Let ψ : Ωi → Ωj be a bijection witnessing Ωi ≡o Ωj . Then by letting g = ψ,
Equation (2.1) holds.
⇐: Let ψ : Ωi → Ωj be defined by ψ(δ) = δg for all δ ∈ Ωi. Then for all h ∈ H and
δ ∈ Ωi we have

ψ(δ)h = δgh = δ
g(h|Ωj)

= δg(g
−1(h|Ωi)g) = δ(h|Ωi)g = δhg = ψ(δh).

Observe that ≡o is an equivalence relation. Proposition 2.1.13 describes the rela-
tionship between equivalent orbits and the centraliser of intransitive groups.

Proposition 2.1.13 ([Ser03, Lemma 6.1.8]). Let H ≤ Sn be an intransitive group with
orbits Ω1,Ω2, . . . ,Ωk. Let B1,B2, . . . ,Bt be the ≡o-classes of the H-orbits. For 1 ≤ i ≤ t,
let Bi := {Ωi1,Ωi2, . . . ,Ωi|Bi|}. For 1 ≤ i ≤ t and 2 ≤ b ≤ |Bi|, let ψib : Ωi1 → Ωib be a
bijection witnessing the orbit equivalence. Let Bi := 〈ψib | 2 ≤ b ≤ |Bi|〉, where ψib is
the involution in Sn, as in Notation 2.1.11. For 1 ≤ i ≤ k, let Ci be the subgroup of Sn
with support Ωi such that Ci|Ωi = CSym(Ωi)(H|Ωi).
Then

CSn(H) = 〈C1 × C2 × . . .× Ck, B1 ×B2 × . . .×Bt〉

∼=
t∏
i=1

CSym(Ωi1)(H|Ωi1) o S|Bi|.

A permutation group algorithm with input H = 〈X〉 is in nearly-linear time if it
runs in time O(n|X| logc |G|). To obtain the polynomial time computation of CSn(H),
we first state the nearly-linear time centraliser computation for transitive groups.

Theorem 2.1.14 ([Ser03, Theorem 6.1.6]). Let G = 〈X〉 ≤ Sym(Ω) be transitive.
Then given an irredundant base B of G and a strong generating set S relative to B, the
centraliser CSym(Ω)(G) can be computed in nearly linear time.

Next we show that we can decide if two orbits are equivalent in polynomial time.
Recall the notation of Fix(H) from Definition 1.1.9.

Lemma 2.1.15 ([Ser03, Lemma 6.1.9]). Let Ωi and Ωj be H-orbits of equal size and
let α ∈ Ωi. Then Ωi ≡o Ωj if and only if Fix(Hα) ∩ Ωj 6= ∅.
Hence for two distinct orbits Ωi and Ωj of H, in polynomial time, we can decide if
Ωi ≡o Ωj and if so, exhibit a bijection ϕ that witnesses it.

Proof. The first part of the result is shown in [Ser03, Lemma 6.1.9]. The last assertion
follows since point stabilisers and their fixed points can be computed in polynomial
time.

24 Chapter 2: Permutation Group Algorithms

Therefore we get a polynomial time result for computing centralisers in the sym-
metric groups.

Theorem 2.1.16. Let G = 〈X〉 ≤ Sym(Ω). Then CSym(Ω)(G) can be computed in
polynomial time.

Proof. By Theorem 2.1.7, a base and a corresponding strong generating set of G can
be computed in polynomial time. Then the result follows from Proposition 2.1.13,
Theorem 2.1.14 and Lemma 2.1.15.

2.1.4 Other polynomial time algorithms

We end this section by giving some other polynomial time results we will be using later
in the thesis.

Proposition 2.1.17 ([BKL83, KL90]). Let G = 〈X〉 ≤ Sn. Then we can compute the
socle soc(G) of G in polynomial time.

Proposition 2.1.18 ([Kan85]). Let G = 〈X〉 ≤ Sn and let p be prime. Then a Sylow
p-subgroup of G can be computed in polynomial time.

Next, we show that we can decide if an isomorphism between two subgroups of Sm
is induced by conjugation in polynomial time. Since the proof in [LM11] aims only to
prove the theoretical time complexity and we are also interested in a practical algorithm,
we give an alternative proof for the result here.

Lemma 2.1.19 ([LM11, Lemma 3.5]). Let G = 〈X〉 and H = 〈Y 〉 be subgroups of Sm,
given by their generators. Let ϕ : G → H be an isomorphism, given by the images of
X. Then in polynomial time, we can decide if there exists c ∈ Sm such that ϕ(g) = gc

for all g ∈ G and if such a c exists, output one such c.
Hence, given an automorphism ϕ of G = 〈X〉 by the images of X, in polynomial time,
we can decide if there exists c ∈ Sm such that ϕ(g) = gc for all g ∈ G and if such a c
exists, output one such c.

Proof. By Part 5 of Theorem 2.1.9, we can check if ϕ is indeed an isomorphism. Let
d ∈ S2m be an involution such that {1, 2, . . . ,m}d = {m + 1,m + 2, . . . 2m}. Consider
the group G2 := {gϕ(g)d | g ∈ G} ≤ S2m.
We first show that there exists a c ∈ Sm such that ϕ(g) = gc for all g ∈ G if and only
if there exists a b ∈ CS2m(G2) such that {1, 2, . . . ,m}b = {m+ 1,m+ 2, . . . , 2m}.
⇒: Consider c as an element of Sm with support contained in {1, 2, . . . ,m}. Let b =

cdc−1. Then {1, 2, . . . ,m}b = {m+1,m+2, . . . , 2m}. We shall show that b ∈ CS2m(G2).

2.2. Problems not known to be in polynomial time 25

Let gϕ(g)d ∈ G2. Then g ∈ G and

(gϕ(g)d)cdc
−1

= (ggcd)cdc
−1

since ϕ(g) = gc

= (gcgcd)dc
−1

since c pointwise stabilises Supp(gcd)

= (gcdgc)c
−1

since d is an involution

= gcdg.

Finally, since Supp(gcd) and Supp(g) are disjoint, gcd and g commute, so

(gϕ(g)d)cdc
−1

= gcdg = ggcd = gϕ(g)d.

Hence b = cdc−1 ∈ CS2m(G2).
⇐: Let gϕ(g)d ∈ G2. Then gϕ(g)d = (gϕ(g)d)b = gbϕ(g)db. Since Supp(g) and
Supp(ϕ(g)db) are subsets of {1, 2, . . . ,m} and Supp(ϕ(g)d) and Supp(gb) are subsets of
{m + 1,m + 2, . . . , 2m}, we have gb = ϕ(g)d. Then gbd−1

= ϕ(g). So ϕ is induced by
conjugation by c := bd−1.

To test whether such a c exists, we construct G2 and look for a centralising element
b that maps {1, 2, . . . ,m} to {m + 1,m + 2, . . . , 2m}. Let O1 be the set consisting of
all orbits of G2 contained in {1, 2, . . . ,m}. Similarly, let O2 be the set consisting of all
orbits of G2 contained in {m+1,m+2, . . . , 2m}. As a consequence of Proposition 2.1.13,
a centralising element that maps {1, 2, . . . ,m} to {m + 1,m + 2, . . . , 2m} exists if and
only if there exists a bijection γ : O1 → O2 such that ω ≡o γ(ω) for all ω ∈ O1.
We attempt to construct such a γ by considering each ω1 ∈ O1 in turn, setting γ(ω1) =

ω2 if we find an orbit ω2 ∈ O2 equivalent to ω1, and the procedure fails if no such
ω2 exists. Since the orbit equivalence is an equivalence relation, we would never have
to backtrack. By Lemma 2.1.15, deciding if two orbits are equivalent can be done in
polynomial time. As there are polynomially many pairs of orbits, deciding the existence
of such a γ can be done in polynomial time. Furthermore, if such a γ exists, by
Lemma 2.1.15, in polynomial time, we can compute a centralising element b ∈ CS2m(G2)

such that {1, 2, . . . ,m}b = {m+ 1,m+ 2, . . . , 2m}.

2.2 Problems not known to be in polynomial time

In this section, we will introduce some permutation group and combinatorial problems
with no known polynomial time solution, and describe the relationship between these
problems. In particular, we will describe parts of the complexity hierarchy from [Luk93].

We start with the graph automorphism problem and Babai’s quasipolynomial time
solution for it. A graph Γ is a pair (V,E) where V is a set and E is a set of 2-subsets of V .
We call V and E the vertices and the edges of graph Γ respectively. The automorphism
group Aut(Γ) of Γ consists of all permutations α of V such that {vα, wα} ∈ E for all
{v, w} ∈ E.

26 Chapter 2: Permutation Group Algorithms

Problem 2.2.1 (Graph-Aut). Given a graph Γ = (V,E), compute its automorphism
group Aut(Γ).

Theorem 2.2.2 ([Bab15]). Graph-Aut (Problem 2.2.1) can be computed in time
2O(logc |V |), for some constant c.

Next we introduce three problems in permutation groups and see how they are
related to Graph-Aut. For the rest of the section, we will assume each permutation
group is given by a generating set, and we measure complexity of permutation group
algorithms in terms of degrees.

Problem 2.2.3 (Set-Stab). Given G ≤ Sym(Ω) and ∆ ⊆ Ω, compute the setwise
stabiliser G{∆}.

Problem 2.2.4 (Cent). Given H,G ≤ Sym(Ω), compute the centraliser CG(H).

Problem 2.2.5 (Inter). Given H,G ≤ Sym(Ω), compute the intersection G ∩H.

The graph automorphism problem is polynomial time reducible to each of the (poly-
nomial time equivalent) problems above.

Theorem 2.2.6 ([Luk93]). 1. Graph-Aut (Problem 2.2.1) is polynomial time re-
ducible to Set-Stab (Problem 2.2.3).

2. Set-Stab, Cent and Inter (Problems 2.2.3, 2.2.4, 2.2.5) are polynomial time
equivalent to each other.

Babai, in [Bab15], gives a quasipolynomial solution to the string isomorphism prob-
lem (Problem 2.2.7), which gives quasipolynomial time solution to Set-Stab.

Problem 2.2.7 (String-Isom). Let G ≤ Sym(Ω). Let Σ be a finite alphabet. Given
functions x : Ω → Σ and y : Ω → Σ, find {g ∈ G | xg = y}, where the action of G on
functions is defined by zg(α) = z(αg

−1
) for all functions z : Ω→ Σ and α ∈ Ω.

Note that since {g ∈ G | xg = y} forms a coset of the stabiliser of the string x, the
output of Problem 2.2.7 can be expressed as a generators of such a stabiliser together
with a coset representative, hence Problem 2.2.7 has a polynomial size output.

Theorem 2.2.8 ([Bab15]). There exists a constant c such that the string isomorphism
problem (Problem 2.2.7) can be solved on 2O(log(|Ω|)c).

Corollary 2.2.9. Set-Stab, Cent and Inter (Problems 2.2.3, 2.2.4, 2.2.5) can be
solved in quasipolynomial time.

Proof. We show that Set-Stab is a special case of the string isomorphism problem,
then the result follows from Part 2 of Theorem 2.2.6 and Theorem 2.2.8.
Let ∆ ⊂ Ω and let Σ := {0, 1}. Let x : Ω → Σ be defined by x(α) = 1 if α ∈ ∆ and
x(α) = 0 otherwise. Let g ∈ G. Then xg = x if and only if x(αg

−1
) = x(α) for all

α ∈ Ω. This is equivalent to ∆g−1
= ∆. Hence the solution of the string isomorphism

problem for x and y := x is the setwise stabiliser G{∆}.

2.2. Problems not known to be in polynomial time 27

A permutation group problem that is believed to be strictly harder than Set-Stab

is the normaliser problem.

Problem 2.2.10 (Norm). Given H,G ≤ Sym(Ω), compute NG(H).

Theorem 2.2.11 ([Luk93]). Set-Stab (Problem 2.2.3) is polynomial time reducible to
Norm (Problem 2.2.10).

It is unknown if Norm is polynomial time reducible to Set-Stab. In Section 2.4
we will present some complexity results for different classes of input groups for Norm,
as well as how we solve the problem in practice. Recall that we measure complexity in
terms of the degree.

A special case of Norm is the Norm-Sym problem.

Problem 2.2.12 (Norm-Sym). Given H ≤ Sym(Ω), compute NSym(Ω)(H).

It is clear that Norm-Sym is polynomially reducible to Norm. However, we do not
know its relation to Set-Stab. It is however at least as hard as Graph-Aut.

Theorem 2.2.13 ([Luk93]). Graph-Aut (Problem 2.2.1) is polynomial time reducible
to Norm-Sym(Problem 2.2.12).

In terms of complexity, we now know that it is simply exponential.

Theorem 2.2.14 ([Wie19]). Norm-Sym(Problem 2.2.12) can be computed in time
2O(|Ω|).

Next we give the decisional variants of the problems we have mentioned so far.

Problem 2.2.15 (Graph-Isom). Given graphs Γ1 = (V1, E1) and Γ2 = (V2, E2),
decide if Γ1 and Γ2 are isomorphic.

Problem 2.2.16 (Set-Trans). Given G ≤ Sym(Ω) and ∆1,∆2 ⊆ Ω, decide if there
exists g ∈ G such that ∆g

1 = ∆2.

Problem 2.2.17 (Conj-Elt). Given G ≤ Sym(Ω) and x, y ∈ Sym(Ω), decide if there
exists g ∈ G such that xg = y.

Problem 2.2.18 (DC-Eq). Given G,H ≤ Sym(Ω) and x, y ∈ Sym(Ω), decide if
GxH = GyH.

Problem 2.2.19 (Conj-Group). Given G,H,K ≤ Sym(Ω), decide if there exists
g ∈ G such that Hg = K.

Theorem 2.2.20 ([Luk93]). 1. Graph-Isom (Problem 2.2.15) is polynomial time
equivalent to Graph-Aut (Problem 2.2.1).

2. Set-Trans (Problem 2.2.16) is polynomial time equivalent to Set-Stab (Prob-
lem 2.2.3).

28 Chapter 2: Permutation Group Algorithms

3. Conj-Elt (Problem 2.2.17) is polynomial time equivalent to Cent (Problem 2.2.4).

4. DC-Eq (Problem 2.2.18) is polynomial time equivalent to Inter (Problem 2.2.5).

5. Conj-Group (Problem 2.2.19) is polynomial time equivalent to Norm (Prob-
lem 2.2.10).

We do not know the decision problem equivalent to Norm-Sym. The most obvious
choice is Conj-Sym.

Problem 2.2.21 (Conj-Sym). Given H,K ≤ Sym(Ω), is there g ∈ Sym(Ω) such that
Hg = K?

Conj-Sym is polynomial time reducible to Norm-Sym but we do not know if the
converse is true.

Recall that computing the centraliser in the symmetric group can be done in poly-
nomial time, whereas Cent is at least as hard as the graph isomorphism problem. In
the case of computing normalisers, we do not know if Norm is strictly harder than
Norm-Sym.

Figure 2.1: Summary of Luks’ hierarchy

2.3 Backtrack search in permutation groups

In this section, we will describe backtrack search in permutation groups, which can
be used to solve permutation group problems with no known polynomial time algo-
rithms. These include all the problems that are shown to be at least as hard as graph
isomorphism (see Section 2.2).

Let G ≤ Sn and let Ω = {1, 2, . . . , n}. Suppose that we want to compute elements
of G satisfying a given property P. We will assume that we can check if an element
g ∈ G satisfies P in polynomial time. In general, these elements form a subgroup or
a coset of a subgroup of G. For simplicity, we shall assume that these elements form
a subgroup G(P) of G. Let B := (β1,β2, . . . ,βm) be a base for G. To systematically

2.3. Backtrack search in permutation groups 29

search through G, we shall define a search tree of G consisting of partial base images of
B.

Definition 2.3.1. Let B := (β1,β2, . . . ,βm) be a base for G. Let g ∈ G. The partial
base image for g of length r ≤ m with respect to base B is the tuple (βg1 , β

g
2 , . . . , β

g
r).

Definition 2.3.2. Let G ≤ Sn and let B := (β1,β2, . . . ,βm) be a base for G. The search
tree T of G with respect to the base B is a tree of depth m defined as follows.

1. The root of T is labeled by the empty list [].

2. A node at depth d < m is labeled by a partial base image [α1,α2, . . . ,αd] of B.

3. Let t be a node labeled by [α1,α2, . . . ,αd] for d < m, then its children have the form
[α1,α2, . . . ,αd, αd+1], for all distinct αd+1 in {βgd+1 | g ∈ G and βgi = αi for 1 ≤
i ≤ d}.

4. Furthermore, we set the left-most node at depth d to be labeled by the partial
base points [β1,β2, . . . ,βd].

For a search tree T of G with respect to base B, consider the map φ mapping each
node t of T to the elements represented by the leaves under the subtree rooted at t. We
denote the power set of G as ℘(G).

Definition 2.3.3. Define a mapping φ : T → ℘(G) by:

[α1,α2, . . . ,αd] 7→ {g ∈ G | βgi = αi for all 1 ≤ i ≤ d}.

Let t = [α1, α2, . . . , αd] be a node at depth d. Then φ(t) forms a coset of G(β1,β2,...,βd)

containing all elements of G that map βgi = αi for all 1 ≤ i ≤ d. In particular, if t is
the leftmost node at depth d, then φ(t) is the point stabiliser G(β1,β2,...,βd). Also note
that if t is a leaf of T , then φ(t) contains a unique element g ∈ G.

We can find a representative r of φ(t) using the transversals of G(β1,β2,...,βi) in
G(β1,β2,...,βi−1) for 1 ≤ i ≤ d. Observe that [α1,α2, . . . ,αd, αd+1] is a child of [α1,α2, . . . ,αd]

if and only if there exists gr ∈ G(β1,β2,...,βd)r such that βgrd+1 = αd+1. Therefore the chil-
dren of [α1,α2, . . . ,αd] are all [α1,α2, . . . ,αd, αd+1] where (αd+1)r

−1 is in the fundamental
orbit β

G(β1,β2,...,βd)

d+1 .
We compute G(P) using Algorithm 1, gathering the elements of G satisfying prop-

erty P as S. We initialise S as the identity group and traverse the search tree depth-first.
When we reach a leaf node t, we check if the permutation g in φ(t) satisfies property
P. If it does, we update S as 〈S, g〉, else we backtrack and continue with the search.
At the end of the search, we shall have G(P) = S.

Remark 2.3.4. The runtime of the backtrack search is correlated to the number of nodes
in the search tree we visited. There are two ways we can reduce this:

30 Chapter 2: Permutation Group Algorithms

Algorithm 1 Backtrack search - main
Input: G ≤ Sn, base B = (β1, β2, . . . , βm) of G, property P
Output: G(P)

Initialise S = 1
RecurseSearch([])
return S

procedure RecurseSearch([α1, α2, . . . , αd])
if d = m then

LeafCheck([α1, α2, . . . , αd])
else

for each possible image αd+1 of βd+1 do
RecurseSearch([α1, α2, . . . , αd+1])

end for
end if

end procedure

procedure LeafCheck([α1, α2, . . . , αm])
Get g ∈ G such that βgi = αi for all 1 ≤ i ≤ m
if g satisfies P then

S ← 〈S, g〉
end if

end procedure

1. If there exists a proper subgroup U of G containing G(P), then search in U

instead.

2. If we can deduce that φ(t) ∩ G(P) ⊆ S or φ(t) ∩ G(P) = ∅, then we can skip
traversing the subtree rooted at t.

Reducing the search tree by Part 1 of Remark 2.3.4 is usually problem specific. The
methods used for the normaliser problem are discussed in more detail in Chapter 4.
We can reduce the search space by deducing that φ(t) ∩G(P) ⊆ S using the following
lemma.

Lemma 2.3.5. Let t be a node of depth d in the search tree T . Let G[d+1] := G(β1,β2,...,βd).
Suppose that we have computed R := G[d+1] ∩ G(P). Let g ∈ φ(t) ∩ G(P), then
φ(t) ∩G(P) ⊆ 〈R, g〉.

Proof. Let h ∈ φ(t) ∩ G(P). Since h ∈ φ(t) and g is a coset representative of φ(t),
we have h ∈ G[d+1]g and so hg−1 ∈ G[d+1]. Then as h, g ∈ G(P), we have hg−1 ∈
G[d+1] ∩G(P) = R. Therefore h ∈ 〈R, g〉.

Suppose that we are at a node in the subtree rooted at [β1, β2, . . . , βd−1, αd], where
αd 6= βd. Since we traverse the search tree by depth-first search and the left-most nodes
are labelled by partial bases, at this point of search, we have traversed the subtree rooted
at [β1, β2, . . . , βd], and so we have computed G(β1,β2,...,βd) ∩ G(P). Hence we may use

2.3. Backtrack search in permutation groups 31

Lemma 2.3.5 to skip traversing the rest of the subtree rooted at [β1, β2, . . . , βd−1, αd].
Therefore, we may replace the LeafCheck procedure with LeafCheckWithBack-

track in Algorithm 2.

Algorithm 2 Procedure at a leaf node t = [α1,α2, . . . ,αm]

procedure LeafCheckWithBacktrack([α1, α2, . . . , αm])
Get g ∈ G such that βgi = αi for all 1 ≤ i ≤ m
if g satisfies P then

S ← 〈S, g〉
Find the largest r such that αi = βi for all 1 ≤ i ≤ r
if r is defined then

Backtrack to node [α1, α2, . . . , αr]
end if

end if
end procedure

Reducing the search space by Part 2 of Remark 2.3.4 is called the pruning of the
search tree. There are some problem-independent and problem-dependent pruning
methods. For example, the orbits of S yield a problem-independent pruning method.

Lemma 2.3.6. Suppose that S := G(β1,β2,...,βd+1) ∩G(P). Let αd+1 and α′d+1 be points
in the same orbit of S. Then there exists g ∈ G(β1,β2,...,βd)∩G(P) such that βgd+1 = αd+1

if and only if there exists g′ ∈ G(β1,β2,...,βd) ∩G(P) such that βg
′

d+1 = α′d+1.

Proof. Let g ∈ G(β1,β2,...,βd) ∩ G(P) such that βgd+1 = αd+1. Since αd+1 and α′d+1 are
in the same S-orbit, there exists s ∈ S such that αsd+1 = α′d+1. Then gs is an element
of 〈S, g〉 ⊆ G(P) that fixes each of β1, β2, . . . , βd and maps βd+1 to α′d+1. The converse
follows by symmetry.

Suppose that we have just traversed the search tree rooted at [β1, β2, . . . , βd+1]

and have backtracked to [β1, β2, . . . , βd]. Then we are now considering branching to a
node [β1, β2, . . . , βd, αd+1] where αd+1 6= βd+1. Observe that at this time, S is exactly
G(β1,β2,...,βd+1) ∩G(P). Then by Lemma 2.3.6, we only branch on [β1, β2, . . . , βd, αd+1]

if αd+1 is the smallest point in its orbit under S. Note that this is a simplified version
of some methods in [Ser03, Section 9.1.1].

Pruning methods for the normaliser problem will be discussed in more detail in
Chapter 4. For methods for the centraliser, intersection and the setwise stabiliser prob-
lem, we refer the reader to [Ser03, Section 9.1.2]. In general, we use a series of boolean
functions called pruning tests.

Definition 2.3.7. A boolean function T : T → Bool is a pruning test if T(t) = False

implies that φ(t) ∩G(P) = ∅.

So at node t in the search, if T(t) = False, we backtrack. If T(t) returns True, no
deductions about φ(t) ∩G(P) can be made, so we continue the search. Here we would
like to stress that T(t) = True does not imply that φ(t) ∩G(P) 6= ∅.

32 Chapter 2: Permutation Group Algorithms

The pruning tests are what make backtrack search a practical solution to problems
with no known polynomial time algorithms. A good pruning test should return False

as much as possible. In particular, the shallower t is, the bigger the subtree we can skip
over if T(t) = False, and hence the more time we can save. Since we are computing
T(t) at every node t that we visit, the function should also be quick. In particular, it
should be computable in polynomial time.

If φ(t) ∩ G(P) 6= ∅, we may still use an approximation of φ(t) ∩ G(P) for search
space reduction. Hence we are also interested in another type of function which we will
call refiners.

Definition 2.3.8. A function R : T → ℘(G) is a refiner if φ(t) ∩G(P) ⊆ R(t).

Note that the image R(t) of a refiner R at the root node t = [] gives a subset of G
containing φ(t) ∩G(P) = G(P). Hence if R(t) is a group, we may search in a smaller
group R(t) instead of G. Note also that for a refiner function R, the boolean function
f : T → Bool defined by

f(t) = False if and only if R(t) = ∅

is a pruning test.
Refiners are useful, as even when T(t) = True, we may get a smaller approximation

of φ(t) ∩ G(P), hence reducing the search space. For more information on how such
approximations R(t) can be represented, see Sections 2.3.1 and 2.3.2.

Lastly, note that we need not fix a base B of G prior to the search. As we always
begin the search by iteratively fixing more base points of G, we may choose new base
points based on the anticipated deductive power of such a base point.

2.3.1 Connections to constraint programming

A constraint satisfaction problem is a type of problem which has the following as inputs

1. a set of decision variables x1, x2, . . . , xm,

2. a set domain Di for each variable xi, and

3. a set of constraints on the variables,

and outputs an assignment or all assignments of the variables using the domains that
satisfies all of the given constraints, or show that no such assignment exists.

The decision variables represent the choices we can make. The domain Di of a
variable xi is the set of values the variable is allowed to take. Each decision variable xi
is assigned a value from the domain Di. Each constraint specifies which assignments of
the decision variables are allowed. For more examples of constraints, see [Dem].

A constraint satisfaction problem can be solved by backtrack search. The backtrack
search for constraint satisfaction problems works similarly to that for groups. We sys-
tematically and iteratively make some assignments of variables, backtracking when we

2.3. Backtrack search in permutation groups 33

deduce that the constraints cannot be satisfied under the current variable assignment.
If the solutions of the problem form a group, we may use methods in [PJ08] to obtain
a generating set for the solutions.

By using the constraints, we can sometimes deduce that the current assignment of
variables will cause some other assignments of variables to be non-viable. If we deduce
this, we can then remove some values from the domains of some unassigned variables,
and hence reduce the search tree. This process of reducing the domains is called pruning.
In turn, together with the constraints, pruning may trigger more deductions. This is
called constraint propagation [Bes06]. Good constraint propagators are central in having
efficient solutions, and much effort has been made in giving powerful propagators for a
large variety of constraints. Note that at any stage of the search, the domains give an
approximation to our solution set under the subtree rooted at the current node.

Now we return to the problem in Section 2.3. That is, given a group G ≤ Sn and a
property P, we want to compute the subgroupG(P) ofG consisting of all elements g ∈ G
satisfying P. Then computing G(P) is a constraint satisfaction problem in the following
way. Let G ≤ Sn. Let B = (β1, β2, . . . , βm) be a base of G. Since elements of G are fully
identified from their base images, a solution in G(P) is equivalent to an assignment of
the images of β1, β2, . . . , βm. We set the decision variables be x1, x2, . . . , xm, each with
domain {1, 2, . . . , n}. The constraints are as follows.

1. For all 1 ≤ i ≤ m, let αi be the value assigned to xi. Then (α1, α2, . . . , αm) is a
valid base image of G.

2. The element g ∈ G such that βgi = αi for all 1 ≤ i ≤ m (if it exists) has to have
property P.

We want to find all assignments of the variables which satisfy the constraints.
For a tuple to be a valid base image of G, the entries of the tuple must be pairwise

distinct. Hence the variables x1, x2, . . . , xm must have pairwise distinct assignments.
This is what we call an AllDifferent constraint, and can give strong deductive power.
For more information on the propagation of such a constraint, we refer to [GMN08].
However, since we are working with groups, the group structure can be exploited to
give us even stronger deduction power. These are the aforementioned pruning tests and
refiners (Definitions 2.3.7 and 2.3.8). In this thesis, we will focus on using the group
structure to prune the search tree. However, note that integrating better propagators
into backtrack search for groups has the potential to speed up calculations.

2.3.2 Non-traditional backtrack search in groups

In [MP14], McKay gives a practical solution to the graph isomorphism problem using
ordered partitions. In [Leo91], Leon introduced similar techniques for solving the permu-
tation group problems in Section 2.2. This method by Leon is called partition backtrack
and it remains as the state-of-the-art method to solve these problems in general. In

34 Chapter 2: Permutation Group Algorithms

partition backtrack, the domains are represented as a pair of ordered partitions over
Ω, which gives efficient implementation methods. We will not give the implementation
details here.

As before, let G ≤ Sym(Ω) and suppose that we want to find the subgroup G(P)

of G containing all elements which satisfy a given property P. The partition backtrack
method represents the domains using pairs of ordered partitions (P,Q) of Ω, where the
sizes of the i-th cell of P and the i-th cell of Q are the same. The algorithm starts with
P and Q being the trivial partitions of Ω with one cell. As in traditional backtracking,
at each search node t := [α1, α2, . . . , αd], we have fixed some images of the base points
β1, β2, . . . , βd to be α1, α2, . . . , αd respectively. Let (P,Q) be the current pair of ordered
partitions of Ω. Then for 1 ≤ i ≤ d, the pair βi and αi are correlated singleton cells
of P and Q respectively. Let φ(t) be as in Definition 2.3.3. The pair (P,Q) of ordered
partitions give an approximation A(P,Q) = {g ∈ G | P g = Q} of φ(t) ∩ G(P). If we
find that A(P,Q) = ∅, we backtrack. If |A(P,Q)| = 1 and the element g ∈ A(P,Q)

satisfies property P, update S as 〈S, g〉. If |A(P,Q)| > 1, we continue the search.

An important part of partition backtrack is the refiner process. At each node t, we
use partition refiners to get partitions P ′ and Q′, each finer than P and Q respectively,
to obtain a tighter approximation of φ(t) ∩G(P).

A set V together with a set E of tuples in V × V is a directed graph. The induced
action of H ≤ Sym(Ω) on Ω× Ω gives rise to certain directed graphs called the orbital
graphs. More specifically, an orbital graph of H is a directed graph with vertices Ω

and edge set an orbit of the action of H on Ω × Ω. Then the normaliser NSym(Ω)(H)

permutes the orbital graphs of H. Theißen in his thesis gives refiners for the normaliser
problem using orbital graphs [The97]. Then in [JPW19], Jefferson et. al. extend the use
of orbital graphs as refiners to other permutation group problems.

An advantage of partition backtrack over the traditional backtrack is its ability
to choose its next base point on the left-most branch. Consider the left-most node
t = [β1, β2, . . . , βd] of depth d. Then φ(t) stabilises a partition P where each βi is in
a singleton cells. Refinement of the partition may fix more points, resulting in more
singleton cells. So we choose our next base points to be some points not in singleton
cells. Eventually this gives the base of G(P), which is also known as the R-base.

Another different paradigm for backtrack search in groups is the graph backtrack
[JPWW19]. The main idea is that rather than translating the orbital graphs into a pair
of ordered partitions, we keep the graph and use its structure to refine our assignments
in search. So the approximation of φ(t)∩G(P) is an approximation of the automorphism
group of some graph. This gives a closer approximation of φ(t)∩G(P) and is shown to
be able to greatly reduce the size of the search tree.

2.4. The normaliser problem 35

2.4 The normaliser problem

Recall Problem 2.2.10, which is also called the normaliser problem. In Section 2.4.1, we
will list some complexity results for the normaliser problem for some restricted classes
of H and G. Then in Section 2.4.2, we present some existing techniques for computing
NG(H) in practice.

2.4.1 Complexity of the normaliser problem

Let H,G ≤ Sn. Recall from Theorem 2.2.14 that NSn(H) can be computed in simply
exponential time. Then by Corollary 2.2.9, we can also compute NG(H) = G∩NSn(H)

in simply exponential time. We start by presenting some polynomial time normaliser
results by restricting the class of G. Recall that all groups are given by their generating
sets.

Theorem 2.4.1 ([KL90, LRW94]). Let H ≤ G ≤ Sn. In polynomial time, we can test
if G is nilpotent, and if so compute NG(H).

Theorem 2.4.2 ([LM11]). Let d ∈ Z+. Let Γd be the class of finite groups, all of whose
non-abelian composition factors embed into Sd. In particular, this includes all solvable
groups. Then, given G,H ≤ Sym(Ω) such that G ∈ Γd, the normaliser NG(H) can be
computed in polynomial time.

Theorem 2.4.3 ([Kan90]). Given K / G ≤ Sn and a Sylow p-subgroup P of K for a
prime p, then NG(P) can be computed in polynomial time.

Now, consider instead the Norm-Sym problem of computing NSn(H) of a given
group H ≤ Sn.

Theorem 2.4.4 ([LM11]). Let H ≤ Sn be simple, then NSn(H) can be computed in
polynomial time.

Theorem 2.4.5 ([RDS20]). Let H ≤ Sn be almost simple, then NSn(H) can be com-
puted in polynomial time.

Theorem 2.4.6 ([RDS20]). Let H ≤ Sn be primitive, then NSn(H) can be computed
in time 2O(log3 n).

Theorem 2.4.7 ([Sic20]). Let H ≤ Sn be a primitive group with non-regular socle, then
NSn(H) can be computed in polynomial time.

The proof of Theorem 2.4.6 in [RDS20] uses the following result for transitive groups
H. Here we note that it is also true for intransitive groups H.

Lemma 2.4.8. Let B be a base of H = 〈X〉 ≤ Sn. Then NSn(H) can be computed in
2O(|X||B| logn).

36 Chapter 2: Permutation Group Algorithms

Proof. Let X = {x1, x2, . . . , xd} and let |B| = m. We will consider all possible A ∈
{1, 2, . . . , n}m and all possible Ii ∈ {1, 2, . . . , n}m for 1 ≤ i ≤ d. For each such tuple
t := (A, I1, I2, . . . , Id), if A is a base of H and each Ii is a valid base image of A, we
attempt to define a map φt : H → H by: for xi ∈ X, let the image φt(xi) be the element
of H mapping A to Ii. If φt(xi) is an automorphism and is induced by conjugation in
Sn, using Lemma 2.1.19, we find a witness g ∈ Sn. We gather all such witnesses in a
group G.
We claim that NSn(H) = 〈CSn(H), G〉. The backward inclusion is clear. For the
forward inclusion, let ν ∈ NSn(H). Let A := Bν and Ii := (Bxi)ν for 1 ≤ i ≤ d.
Note first A is a base of H since H(A) = H(Bν) = (H(B))

ν = 1. Secondly, note that
Ax

ν
i = Bνν−1xiν = Bxiν = Ii for all 1 ≤ i ≤ d, so the Ii are valid base images of A.

Hence, by letting t := (A, I1, I2, . . . , Id), the map φt is defined. Since the base images of
each element of H are unique and both φt(xi) and xνi map A to Ii, we have φt(xi) = xνi
for 1 ≤ i ≤ d. In particular, φt is an automorphism induced by conjugation in Sn and so
there exists g ∈ G such that φt(xi) = xgi for all 1 ≤ i ≤ d. Therefore, for all 1 ≤ i ≤ d,
we have xgi = xνi . Hence νg

−1 ∈ CSn(H).
For the complexity result, note first that there are O(n(d+1)|B|) = O(n|X||B|) choices of
t = (A, I1, I2, . . . , Id). By Lemma 2.1.6, we can check if the Ii are valid base images
of A in polynomial time. By Part 6 of Theorem 2.1.9, we can check if φt induces an
automorphism in polynomial time. Then by Lemma 2.1.19, in polynomial time, we can
decide if φt is induced by conjugation in Sn and if so output a witness g.

So if a group G ≤ Sn has base B and generating set X where |B| and X are of size
O(log n), then NSn(H) can be computed in time 2O(log3 n).

2.4.2 Computing normalisers in practice

In general, we compute normalisers via backtrack search (see Section 2.3). In this
subsection, we will first present some elementary results used for pruning tests and
refiners (Definitions 2.3.7 and 2.3.8) for the normaliser problem.

For the rest of the subsection, let H,G ≤ Sn and suppose that we want to compute
NG(H). Let Ω = {1, 2, . . . , n}. Let B = (β1,β2, . . . ,βm) be a base of G and let T be
the search tree of G with respect to the base B. Let P be the property “conjugates H
to H”. So G(P) = {g ∈ G | Hg = H} = NG(H).

The following result is frequently used for pruning.

Lemma 2.4.9. Let g ∈ NG(H) such that (δ1,δ2, . . . ,δk)
g = (γ1,γ2, . . . ,γk) for some k.

Then (H(δ1,δ2,...,δk))
g = H(γ1,γ2,...,γk).

Proof. Let h ∈ H(δ1,δ2,...,δk). Then hg fixes the γi, so hg ∈ H(γ1,γ2,...,γk). The reverse
inclusion follows from symmetry.

Suppose that we are at node t = [α1,α2, . . . ,αd] in the search three T . Then we wish
to backtrack when H(α1,α2,...,αd) and H(β1,β2,...,βd) are not conjugate in G. Hence we

2.4. The normaliser problem 37

want our pruning tests and refiners to return False and ∅ respectively if H(α1,α2,...,αd)

and H(β1,β2,...,βd) are not conjugate in G. However, deciding if two groups are conjugate
in G is difficult, even when G is the symmetric group. So instead, we identify and
compute properties of groups that are preserved under conjugation, and use them to
construct pruning tests and refiners.

Definition 2.4.10. Denote by S(Sn) the set of all subgroups of Sn. A conjugacy
invariant function Ψ is a function with domain S(Sn) such that if K,L ≤ Sn are
conjugate in Sn, then Ψ(K) = Ψ(L).

Example 2.4.11. Let Ψ1 and Ψ2 be functions with domain S(Sn) defined by

1. Ψ1(K) = |K|.

2. Ψ2(K) gives the multiset consisting of the sizes of the orbits of K.

Then since conjugation preserves size and orbit sizes, Ψ1 and Ψ2 are conjugacy invariant
functions.

We can use a conjugacy invariant function to prune our search tree.

Lemma 2.4.12. Let Ψ be a conjugacy invariant function. Define a function T : T →
Bool by

T([α1,α2, . . . ,αd]) =

True if Ψ(H(β1,β2,...,βd)) = Ψ(H(α1,α2,...,αd)),

False otherwise.

Then T is a pruning test for computing the normaliser NG(H).

Proof. Let t := [α1,α2, . . . ,αd] ∈ T such that T(t) = False. Then Ψ(H(β1,β2,...,βi)) 6=
Ψ(H(α1,α2,...,αi)). By the definition of a conjugacy invariant function, H(β1,β2,...,βi) and
H(α1,α2,...,αi) are not conjugate in Sn. Then by Lemma 2.4.9, there does not exist
ν ∈ NG(H) ≤ NSn(H) such that (β1,β2, . . . ,βd)

ν = (α1,α2, . . . ,αd). In other words,
NG(H) ∩ φ(t) = ∅.

Similarly, we define conjugacy invariant refiners which will give refiners for the nor-
maliser problem.

Definition 2.4.13. Denote by S(Sn) the set of all subgroups of Sn. A conjugacy in-
variant refiner Φ is a function with domain S(Sn)×{1, 2, . . . , n} such that for subgroups
K,L ≤ Sn for which there exists g ∈ Sn such that Kg = L, we have Φ(K,α) = Φ(L,αg)

for all α ∈ Ω.

Example 2.4.14. Let Φ be a function with domain S(Sn) × {1, 2, . . . , n} such that
Φ(K,α) returns the size of the K-orbit containing α. Then since g maps a K-orbit to
a Kg-orbit of the same size, Φ is a conjugacy invariant refiner.

38 Chapter 2: Permutation Group Algorithms

Lemma 2.4.15. Let Φ be a conjugacy invariant refiner. Define a function R : T →
℘(G) by

R([α1,α2, . . . ,αd]) = {g ∈ G | Φ(H(β1,...,βd), γ) = Φ(H(α1,...,αd), γ
g) for all 1 ≤ γ ≤ n}

Then R is a refiner for computing the normaliser NG(H).

Proof. Let t = [α1,α2, . . . ,αd] ∈ T . To show that φ(t) ∩ NG(H) ⊆ R(t), let g 6∈ R(t).
We show that g 6∈ φ(t)∩NSn(H). If g 6∈ φ(t) then we are done. Suppose that g ∈ φ(t).
Since g 6∈ R(t), there exists γ ∈ Ω such that Φ(H(β1,β2,...,βi), γ) 6= Φ(H(α1,α2,...,αi), γ

g).
Then by the definition of a conjugacy invariant refiner, (H(β1,β2,...,βi))

g 6= H(α1,α2,...,αi).
So by Lemma 2.4.9, g 6∈ NSn(H).

Butler in [But83] used the orbit structure of groups as a conjugacy invariant function
(see Example 2.4.11), and Theißen in [The97] uses the orbital graphs as conjugacy
invariant refiners. We will present other conjugacy invariant functions and refiners in
Chapter 4.

In addition to Lemma 2.4.9, the following lemma can be used in conjunction with
the conjugacy invariant functions and refiners to prune and/or refine the search tree:

Lemma 2.4.16. Let ∆1 and ∆2 be unions of H-orbits. Let g ∈ NG(H) such that
∆g

1 = ∆2. Then (H|∆1)g = H|∆2.

Proof. Since the support of (H|∆1)g is ∆2 and Hg = H, we have (H|∆1)g ≤ H|∆2 . The
reverse inclusion follows from symmetry.

Suppose that we are at a node of the search tree labeled by t = [α1,α2, . . . ,αd].
Let ∆ be the union of H-orbits fixed pointwise by H(β1,β2,...,βd). Then (β1,β2, . . . ,βd)

forms a base for H|∆, and so (α1,α2, . . . ,αd) forms a base for H|∆′ for some union ∆′

of H-orbits. Then we may use conjugacy invariant functions and refiners to prune and
refine the search tree as before.

We end the section with some existing techniques for improving the computation of
NG(H). Holt in [Hol91] introduced two pruning tests. Firstly, we can prune using the
orbit sizes of the stabilisers of the partial base points and base images. This is equivalent
to the combination of Example 2.4.14 and Lemma 2.4.15. Secondly, he observed that
the normalising elements induce an automorphism of H. In particular, if H is regular,
choosing the base image of two points fully determines the image of each element of H,
as in Lemma 2.4.8. Also if H acts faithfully on a set ∆, then once the image of ∆ is
determined, we have obtained an automorphism of H, defined on the generators. This
helps with the pruning of the search tree.

Holt’s result works well for regular groups, but not on elementary abelian groups
that are neither regular nor the intransitive direct product on disjoint sets. Hulpke
in [Hul08] tackles this situation by also using the fact that each normalising element

2.4. The normaliser problem 39

induces an automorphism of H. Let A be the subgroup of Aut(H) induced by the con-
jugation action of NG(H). Let C be the maximal subgroup of Aut(H) which preserves
equivalence classes induced by the cycle structures of elements of H. Since conjugation
preserves cycle structures, we have A ≤ C. By considering C as a permutation group
in Sym(H), we perform a backtrack search in C to find A and hence compute NG(H).

Let H ≤ Sn be intransitive and suppose that we are computing NSn(H). In [Hul05,
Section 11], Hulpke present methods of obtaining a proper subgroup S of Sn containing
NSn(H) by considering the permutation isomorphism classes of the projections of H
onto the H-orbits to construct conjugacy invariant functions. Much of the ideas pre-
sented in [Hul05, Section 11] will be restated in Section 4.3. Lastly note that for the
case when H is transitive but not primitive, Hulpke observes that similar methods can
be used by considering the H-blocks instead of the H-orbits.

Lastly, Miyamoto in [Miy06] uses association schemes to improve normaliser compu-
tations. Let H ≤ Sn be transitive and let A be the automorphism group of the orbitals
of H. Since NSn(H) ≤ A, a block ∆ of A is also a block of H and of NSn(H). Let H be
the action of H on the blocks. Then we have NSn(H) ≤ (NA{∆}|∆(H{∆}|∆) oNA(H)),
so we may search in a smaller group instead.

40 Chapter 2: Permutation Group Algorithms

Chapter 3

Disjoint Direct Product
Decomposition

A direct product decomposition of a given group H is an expression of H as a direct
product of groups. The direct product decomposition is useful for understanding the
structure of the group, and to solve problems more efficiently. Hence, it is important to
find an efficient algorithm for computing such decompositions. Kayal and Nezhmetdi-
novm, in [KN09], give a polynomial time algorithm for computing a direct product
decomposition of a group H given by its multiplication table, which has input size |H|2.
We consider computing direct product decompositions of permutation groups given by
generating sets, which are usually much smaller than the order of the group. Wilson,
in [Wil12] gives a polynomial time solution to such a problem. However, as far as we
know, this algorithm has not yet been implemented.

In this chapter, we will consider a particular type of direct product decomposition
for finite permutation groups, which we will call a disjoint direct product decomposition,
which are direct product decompositions of permutation groups where the factors have
disjoint supports. We will give a polynomial time algorithm for finding disjoint direct
product decompositions of a permutation group given by a generating set and also
demonstrate the practical efficiency of our algorithm. In this chapter, we will regard
the direct product of groups with disjoint supports as a subgroup of the symmetric
group on the union of the supports of the direct factors.

Definition 3.0.1 (Disjoint direct product decomposition). Let H ≤ Sn. We say that
H = H1 ×H2 × . . .×Hr is a disjoint direct product decomposition of H if it is a direct
product decomposition of H and the groups Hi have pairwise disjoint supports.
If there exists a disjoint direct product decomposition H = H1 ×H2 × . . . ×Hr of H
with r > 1, then we say that H is d.d.p. decomposable, otherwise we say that H is d.d.p.
indecomposable.
A disjoint direct product decomposition is finest if each factor is d.d.p. indecomposable.

Since the disjoint direct product decomposition is more restrictive than a more gen-

41

42 Chapter 3: Disjoint Direct Product Decomposition

eral decomposition, it can be computed much faster and has many useful applications.
As we will demonstrate in Section 3.4, the disjoint direct product decomposition of
a permutation group can be used to greatly speed up various other calculations with
permutation groups. Furthermore, calculations that previously could not be completed
in a reasonable time frame can be solved very quickly using the disjoint direct product
decomposition to subdivide the computation into smaller pieces.

Another important application of disjoint direct product decompositions lies in other
areas of computer science, where groups arise from symmetries of combinatorial objects.
To reduce the computation time, groups are used to eliminate the symmetries of the
objects through a process called symmetry breaking [GPP06].

Donaldson et. al. [DM06] use the disjoint direct product decomposition to improve
the performance of detecting symmetric states in model checking and Grayland et. al.
[GJMRD09, Theorem 10] uses the disjoint direct product decomposition when generat-
ing symmetry breaking constraints for symmetric problems. Grayland et. al. gives an
algorithm for symmetry breaking which uses the disjoint direct product of two symmetry
groups [GJMRD09] but otherwise does not consider general direct product decompo-
sitions. In both of these applications, disjoint direct product decompositions lead to
significant speed-ups.

For these applications in both computational group theory and otherwise, the time
saved depends on the number of factors in the decomposition. Hence we are interested
in an algorithm that always computes a finest disjoint direct product decomposition.
By the Krull–Schmidt theorem, any finite group has a unique finest direct product
decomposition [Hun74, Theorem 3.8], up to isomorphism. In Proposition 3.2.2, we
show that the finest disjoint direct product decomposition of a given finite permutation
group is unique.

The main result of this chapter is to provide an efficient algorithm to compute the
finest disjoint direct product decomposition of a given permutation group, and hence
prove the following.

Theorem 3.0.2. Let H ≤ Sn be given by a generating set X. Then the finest disjoint
direct product decomposition of H can be computed in time polynomial in |X|n.

Our algorithm behind Theorem 3.0.2 manipulates a strong generating set and there-
fore is fast in practice once a base and strong generating set have been found. Finding a
base and strong generating set is an initial part of most permutation group algorithms.
Hence, finding a disjoint direct product decomposition will not add significantly to the
runtime of these algorithms.

The structure of this chapter is as follows. In Section 3.1, we present some related
work in the literature, and the definitions, notation and background knowledge we use
later on. In Section 3.2, we present the theoretical framework which we use for the
algorithms we present in Section 3.3. Also in Section 3.3, we prove Theorem 3.0.2.
Lastly, in Section 3.4, we demonstrate how the algorithm can be used to speed up

3.1. Background and preliminaries 43

computation in some permutation group theoretic functions in GAP.

3.1 Background and preliminaries

If G is a direct factor of H, then G E H. So a naive approach to finding its disjoint
direct product decomposition is to consider all normal subgroups N of H, check if there
exists K such that N ×K = H, then recursively try to decompose N and K. While it
is possible to optimise this approach, it has worst-case exponential complexity, since it
requires considering all normal subgroups of H, and there can be exponentially many
of them.

Wilson’s polynomial time algorithm in [Wil12] computes a finest (not necessarily
disjoint) direct product decomposition of a given permutation group H. As far as we
are aware, the algorithm has yet to be implemented. We show that it is substantially
easier to compute the finest disjoint direct product decomposition than the finest direct
product decomposition.

Donaldson and Miller in [DM09, Section 5.1] present a polynomial algorithm for
computing a disjoint direct product decomposition by considering only the generators.
They use the observation that, if H = 〈X〉 and there exists S ⊂ X such that the
support of S and the support of X\S are disjoint, then H = 〈S〉 × 〈X\S〉 is a disjoint
direct product decomposition. The method by Donaldson and Miller is a subprocedure
of the algorithm we present in Section 3.3. However, note that the method in [DM09]
does not guarantee that the decomposition is a finest one as different choices of X
may produce different decompositions. Donaldson and Miller reported that using the
generators computed from the graph automorphism program they used, this method
seems to almost always produce the finest decomposition. We hypothesise that these
programs almost always produce separable strong generating sets, which we shall define
in Definition 3.2.8.

In [DM09], Donaldson and Miller also present an exponential-time algorithm to
compute the finest disjoint direct product decomposition of H. The algorithm involves
recursively computing disjoint direct product decompositions with two factors. To con-
struct such a decomposition of H, they consider all partitions of the H-orbits with two
cells C1 and C2. Letting ∆1 :=

⋃
Ωi∈C1

Ωi and ∆2 :=
⋃

Ωi∈C2
Ωi, they test if P gives rise

to a disjoint direct product decomposition by checking if H = H|∆1 ×H|∆2 . They also
made a significant improvement to their algorithm by first considering the projections
onto pairs of orbits and deciding if they are d.d.p. decomposable.

We would like to draw the reader’s attention to an elementary result, which we shall
repeatedly use later.

Lemma 3.1.1. Let H be a subdirect product of the external direct product G1 × G2.
Then H = G1 ×G2 if and only if 1×G2 ≤ H.

Proof. The forward implication is clear. For the backward implication, for all (g1, g2) ∈

44 Chapter 3: Disjoint Direct Product Decomposition

H, since (1, g2) ∈ H, we have (g1, 1) ∈ H. The projection of H onto G1 is the whole
G1, so G1 × 1 ≤ H. Now since G1 × 1 and 1 × G2 generate G1 × G2 and are both
contained in H, we have H = G1 ×G2.

Recall that we regard a direct product of groups that have disjoint supports as a
subgroup of the symmetric group over the disjoint union of the supports of the factors.
For the rest of the chapter, we will use the following notation.

Notation 3.1.2. Let H ≤ Sn. Let Ω1,Ω2, . . . ,Ωk be the H-orbits. For 1 ≤ i ≤ k, let
Gi := H|Ωi . We consider H as a subdirect product of G := G1 ×G2 × . . .×Gk ≤ Sn.
For 1 ≤ i ≤ k, let πi : G→ Gi be defined by h 7→ h|Ωi . For a subset I of {1, 2, . . . , k},
let ΠI : G→ H|∪i∈IΩi be defined by h 7→ h|∪i∈IΩi .
For all 1 ≤ i ≤ k, let ∆i :=

⋃
j≤i

Ωj .

Let i denote the set {1, 2, . . . , i}.

It is important that the naming of the H-orbits are fixed in our algorithms. We
maintain such consistency by fixing an order on the H-orbits. The choice of how we
order them is unimportant. In our experiments, we chose to order the orbits by their
smallest elements.

3.2 Disjoint direct product decomposition

In this section, we will first show that H ≤ Sn has a unique finest disjoint direct
product decomposition. For 1 ≤ i ≤ k − 1, let Ni+1 and θi be as in Theorem 1.4.3. In
Section 3.2.1, we will see how the computation of disjoint direct product decompositions
can be reduced to computing the Ni+1 and the kernels of the θi. We then show that
the Ni+1 and Ker(θi) can be efficiently computed in Section 3.2.2.

Definition 3.2.1. We say that two disjoint direct product decompositions H = H1 ×
H2 × . . .×Hr and H = K1 ×K2 × . . .×Ks of H ≤ Sn are equivalent if the sets of sets
{Supp(Hi) | 1 ≤ i ≤ r} and {Supp(Ki) | 1 ≤ i ≤ s} are the same.

Proposition 3.2.2. Up to equivalence, there is a unique finest disjoint direct product
decomposition of H.

Proof. Let H = H1 ×H2 × . . .×Hr and H = K1 ×K2 × . . .×Ks be two inequivalent
finest disjoint direct product decompositions of H. Since {Supp(Hi) | 1 ≤ i ≤ r}
and {Supp(Ki) | 1 ≤ i ≤ s} forms partitions of Ω, for each Hi, there exists at least
one Kj such that Supp(Hi) ∩ Supp(Kj) 6= ∅. Now since the two decompositions are
inequivalent, there exist 1 ≤ i ≤ r and 1 ≤ j ≤ s such that Supp(Hi) 6= Supp(Kj)

and Supp(Hi) ∩ Supp(Kj) 6= ∅. Let Γ := Supp(Hi) and ∆ := Supp(Kj). We will show
that Hi = Hi|Γ\∆ × Hi|Γ∩∆ is a disjoint direct product decomposition of Hi, which
contradicts the fact that H = H1×H2× . . .×Hr is a finest decomposition. Since Hi is
a subdirect product of Hi|Γ\∆ ×Hi|Γ∩∆, by the backward implication of Lemma 3.1.1

3.2. Disjoint direct product decomposition 45

it suffices to show that Hi|Γ∩∆ × 1Γ\∆ ≤ Hi. We do so by showing that for all hi ∈ Hi,
there exists h′i ∈ Hi such that h′i|Γ∩∆ = hi|Γ∩∆ and h′i|Γ\∆ = 1.
Let hi ∈ Hi. Let ĥi ∈ Sn satisfy ĥi|Γ = hi and ĥi|n\Γ = 1. By the forward implication
of Lemma 3.1.1, ĥi ∈ H. Similarly, since Kj is a disjoint direct factor of H, there exists
h ∈ H such that h|n\∆ = ĥi|n\∆ and h|∆ = 1. Then h′ := ĥih

−1 is an element of H
such that

h′|Γ∩∆ = (ĥi|Γ∩∆)(h−1|Γ∩∆) = ĥi|Γ∩∆ = hi|Γ∩∆,

h′|Γ\∆ = (ĥi|Γ\∆)(h−1|Γ\∆) = (ĥi|Γ\∆)(ĥi
−1|Γ\∆) = 1,

and h′|n\Γ = 1. Therefore, h′|Γ is an element of Hi such that h′|Γ∩∆ = hi|Γ∩∆ and
h′|Γ\∆ = 1.

3.2.1 Computing the disjoint direct product decomposition

Recall Notation 3.1.2 and recall that we denote {1, 2, . . . , i} by i. We will compute the
finest disjoint direct product decomposition of H by iteratively computing the finest
disjoint direct product decomposition of Πi(H) for 1 ≤ i ≤ k. In this subsection, we
show for 1 ≤ i < k, how we can compute the finest disjoint direct product decomposition
of Πi+1(H) using the finest disjoint direct product decomposition of Πi(H) and the
groups Ni+1 and homomorphisms θi from Theorem 1.4.3.

Since the support of each disjoint direct factor of a group is a union of (some of) its
orbits, we will be computing certain partitions of i for each 1 ≤ i ≤ k.

Definition 3.2.3. For 1 ≤ i ≤ k, let Pi = 〈C1 | C2 | . . . | Cr〉 be the partition of i
consisting of cells Cj ⊆ i for 1 ≤ j ≤ r such that Πi(H) = ΠC1(H) × ΠC2(H) × . . . ×
ΠCr(H) is the finest disjoint direct product decomposition of Πi(H).

Observe that trivially, P1 = 〈{1}〉. Proposition 3.2.4 describes how we can compute
Pi+1 using Pi for 1 ≤ i < k. To simplify notation, from now on, for subsets I, J ⊆ k and
for h ∈ H, we denote by ΠI(h)×1J the element h′ ∈ ΠI∪J(H) such that ΠI(h

′) = ΠI(h)

and ΠJ(h′) = 1. Similarly, for S ⊆ H, we denote by ΠI(S) × 1J the set {ΠI(h) × 1J |
h ∈ S}.

Proposition 3.2.4. Let 1 ≤ i < k. Let Pi = 〈C1 | C2 | . . . | Cr〉 be as in Definition 3.2.3
and let θi be as in Theorem 1.4.3. Let

S := {Cj | ΠCj (H)× 1i\Cj 6⊆ Ker(θi), for 1 ≤ j ≤ r}

and let C =
⋃
Cj∈S Cj ∪ {i+ 1}. Then

Πi+1(H) = ΠC(H)× ×
Cj 6∈S

ΠCj (H) (3.1)

is the finest disjoint direct product decomposition of Πi+1(H).

46 Chapter 3: Disjoint Direct Product Decomposition

Hence the partition Pi+1 from Definition 3.2.3 is the partition of i+ 1 consisting of cell
C and all other cells Cj of Pi such that Cj 6∈ S.

Proof. We will first show that Equation (3.1) is a disjoint direct product decomposition
of Πi+1(H), and then we will show that it is the finest disjoint direct product decom-
position. The statement on Pi+1 will then follow from Definition 3.2.3.
Since the factors in Equation (3.1) move disjoint sets of points, we show that Equa-
tion (3.1) is a disjoint direct product decomposition of Πi+1(H), by showing that it
is a direct product decomposition. Observe that Πi+1(H) is a subdirect product of
ΠC(H) ××Cj 6∈S ΠCj (H). Then by the backward implication of Lemma 3.1.1, it suf-
fices to show that 1C ××Cj 6∈S ΠCj (H) ≤ Πi+1(H). We will do so by showing that
ΠCj (H)× 1i+1\Cj ≤ Πi+1(H) for all cells Cj of Pi such that Cj 6∈ S.
Let Cj 6∈ S. Then θi(ΠCj (H) × 1i\Cj) = Ni+1. Take Ri+1 = {1} and let ϕi be as
in Theorem 1.4.3. Then ϕi(ΠCj (H) × 1i\Cj) = ΠCj (H) × 1i+1\Cj ≤ Πi+1(H). Hence,
Equation (3.1) gives a disjoint direct product decomposition of Πi+1(H).

We will now show that Equation (3.1) is the finest disjoint direct product decompo-
sition. As Cj 6∈ S are cells of Pi, the groups ΠCj (H) for Cj 6∈ S are d.d.p. indecom-
posable, so it remains to show that ΠC(H) is d.d.p. indecomposable. Observe that
for Cj 6∈ S, since ΠCj (H) is a finest disjoint direct factor of Πi+1(H), each Cj 6∈ S

is a cell of Pi+1. We proceed as follows. We first show that C is a union of some of
U := {C1, C2, . . . , Cr, {i + 1}} and then show that Cj ∈ S is in the same cell of Pi+1

with {i + 1}, from which we deduce that C is a cell of Pi+1 and so ΠC(H) is d.d.p.
indecomposable.
To prove the first claim, we show that for all u ∈ U such that u∩C 6= ∅, we have u ⊆ C.
This is trivially true for u = {i+1}. Let Cj be a cell of Pi such that Cj∩C 6= ∅. We have
shown that Equation (3.1) is a disjoint direct product decomposition, so the projection
ΠC(H) is a disjoint direct factor of Πi+1(H), so ΠC(H) × 1i+1\C ≤ Πi+1(H). Then
ΠCj∩C(H) × 1Cj\C ≤ ΠCj (H). Since ΠCj (H) is d.d.p. indecomposable, Cj ∩ C = Cj ,
so Cj ⊆ C and therefore C is a union of some of U .
Lastly, we show that each Cj ∈ S is in the cell of Pi+1 containing i + 1. Let Cj ∈ S.
Aiming for a contradiction, suppose that Cj and i+ 1 are in different cells of Pi+1. Let
ϕi be as in Theorem 1.4.3 and consider L := ϕi(ΠCj (H)× 1i\Cj) ⊆ Πi+1(H). Let D be
a cell of Pi+1 containing Cj . Then ΠD(L)× 1i+1\D ≤ ΠD(H)× 1i+1\D is contained in
Πi+1(H). Since i+ 1 6∈ D, it follows that

Πi(L)× 1i+1 = ΠD(L)× 1i+1\D ≤ Πi+1(H).

Now since both L and Πi(L)×1i+1 are contained in Πi+1(H), the set 1i×πi+1(L) is also
contained in Πi+1(H). Therefore πi+1(L) ⊆ Ni+1 and hence θi(ΠCj (H)×1i\Cj) = Ni+1,
a contradiction to the fact that Cj ∈ S.

Proposition 3.2.4 will be used as the core of our algorithm for finding the finest

3.2. Disjoint direct product decomposition 47

disjoint direct factor decomposition in Section 3.3.

3.2.2 Orbit-ordered base and separable strong generating set

In this subsection, fix 1 ≤ i < k and let Ni+1, θi and ϕi be as in Theorem 1.4.3. We will
see how we can use some fundamental data structures associated to permutation groups
to compute the Ni+1 and find the cells Cj of Pi such that ΠCj (H)× 1i\Cj 6⊆ Ker(θi).

Recall the definitions of base and strong generating sets from Definitions 1.5.1
and 1.5.3, and recall the sets ∆i from Notation 3.1.2. We will be using bases that
are orbit-ordered.

Definition 3.2.5. A base B := (β1, β2, . . . , βm) of H ≤ Sn is orbit-ordered with respect
to the ordering Ω1,Ω2, . . . ,Ωk of the H-orbits if there exist 1 ≤ j1 ≤ j2 ≤ . . . ≤ jk ≤ m
such that for all 1 ≤ i ≤ k, we have H(β1,β2,...,βji)

= H(∆i).

Remark 3.2.6. Recall from Notation 3.1.2 that we fixed an ordering Ω1, Ω2, . . . , Ωk of
the H-orbits. Then the concatenation of Ω1,Ω2, . . . ,Ωk is a (redundant) orbit-ordered
base of H.

We can compute Ni+1 from a strong generating set of H relative to an orbit-ordered
base.

Lemma 3.2.7. Let B := (β1, β2, . . . , βm) be an orbit-ordered base of H ≤ Sn with
respect to the ordering Ω1,Ω2, . . . ,Ωk. Let X be a strong generating set of H with
respect to B. Then Ni+1 = 〈πi+1(x) | x ∈ X ∩H(∆i)〉 for all 1 ≤ i < k.

Proof. Since B is orbit-ordered, there exists 1 ≤ j ≤ m such that H(β1,β2,...,βj) = H(∆i).
As X is a strong generating set relative to B, we have H(∆i) = 〈X ∩H(∆i)〉. The result
follows since Ni+1 = πi+1(H(∆i)).

Recall that we compute the Pi iteratively. At the i-th iterative step, we will produce
a strong generating set for H that is i-separable.

Definition 3.2.8. Let Pi be as in Definition 3.2.3. A strong generating set X of H
with respect to an orbit-ordered base B is i-separable if for all x ∈ X with non-trivial
projection Πi(x) , there exists a unique cell Cj of Pi such that Πi(x) ∈ ΠCj (H)× 1i\Cj .
We say that X is separable if it is k-separable, where k is the number of orbits of H.

Note that since we have fixed an ordering of the H-orbits, by Proposition 3.2.2 the
partitions Pi are unique, so i-separability depends only on i.

Example 3.2.9 (running example). LetH be as in Example 1.4.5. Recall that we order
the H-orbits by their smallest elements, so we have an ordering Ω1,Ω2,Ω3,Ω4. Then
B := (1, 4, 5, 7) is an orbit-ordered base since H(∆1) = H(1), H(∆2) = H(1,4,5), H(∆3) =

H(∆4) = H(1,4,5,7). The generating set X := {x1, x2, x3, x4} is a strong generating

48 Chapter 3: Disjoint Direct Product Decomposition

set of H with respect to the base B. So Π2(H) = 〈(1, 2, 3), (4, 5, 6), (5, 6)〉 and hence
P2 = 〈{1} | {2}〉. Then X is 2-separable since

Π2(x1) ∈ π1(H)× 12 and Π2(x2),Π2(x3) ∈ 11 × π2(H) and Π2(x4) = 1.

Similarly, we can show that P3 = 〈{1} | {2, 3}〉. The set X is not 3-separable since
π1(x1) and Π{2,3}(x1) are both non-trivial.

For each cell Cj of Pi, we may compute θi(ΠCj (H) × 1i\Cj) using an i-separable
strong generating set of H.

Lemma 3.2.10. Let X be an i-separable strong generating set of H. Then for each cell
Cj of Pi, we have

θi(ΠCj (H)× 1i\Cj) = 〈Ni+1πi+1(x) | x ∈ X such that ΠCj (x) 6= 1〉.

Proof. Since X is i-separable, ΠCj (H) × 1i\Cj is generated by the Πi(x) where x ∈ X
such that ΠCj (x) 6= 1. So the result folllows from the definition of θi.

Recall the sifting procedure and the definition of siftees from Definition 2.1.4. Note
that gs is a product of g and an element of H.

Lemma 3.2.11. Let g ∈ Sn and let g′ be a siftee of g by H. Then there exists h ∈ H
such that g = g′h.

Proof. Let B and the Ri be as in Definition 2.1.4. Then there exist 1 ≤ s ≤ m+ 1 and
ri ∈ Ri for all 1 ≤ i ≤ s − 1 such that g′ = gr−1

1 r−1
2 . . . r−1

s−1. Since the Ri ⊆ H, the
result follows.

Recall from Section 1.5 that a base B = (β1, β2, . . . , βm) of H defines a subgroup
chain H [1] ≥ H [2] ≥ . . . ≥ H [m+1] called a stabiliser chain, where H [1] := H and
H [i] := H(β1,β2,...,βi−1) for 2 ≤ i ≤ m + 1. The siftee of g ∈ Sn by H obtained from
a sifting procedure is not unique: it depends on the choice of the base B and the
transversals Ri associated to the stabiliser chain defined by B.

In our algorithm, we will be sifting elements of H by stabilisers H(∆i). Let B :=

(β1, β2, . . . , βm) be an orbit-ordered base ofH with respect to the ordering Ω1,Ω2, . . . ,Ωk.
Then there exists 1 ≤ j ≤ m such that (βj+1, βj+2, . . . , βm) is a base of H(∆i), with
associated stabiliser chain H [j+1] ≥ H [j+2] ≥ . . . ≥ H [m+1], which is a subchain of the
stabiliser chain of H defined by B. Whenever we sift an element h ∈ H by a stabiliser
H(∆i), we sift using the partial stabiliser chain defined by an orbit-ordered base B of
H.

Definition 3.2.12. Let B := (β1, β2, . . . , βm) be an orbit-ordered base of H and let
1 ≤ j ≤ m such that (βj+1, βj+2, . . . , βm) is a base of H(∆i). For h ∈ H, a siftee of h
by H(∆i) is a siftee obtained by the sifting h using the stabiliser chain defined by base
(βj+1, βj+2, . . . , βm).

3.3. Algorithm 49

For x ∈ X, we will be deciding whether πi+1(x) ∈ Ni+1 by considering a siftee of x
by H(∆i).

Lemma 3.2.13. Let B be an orbit-ordered base of H ≤ Sn with respect to the H-orbit
ordering Ω1,Ω2, . . . ,Ωk. Let x ∈ H and x′ be a siftee of x by H(∆i), where the sifting
procedure uses the partial stabiliser chain of H defined by B, as in Definition 3.2.12.
Then πi+1(x) ∈ Ni+1 if and only if πi+1(x′) = 1.

Proof. ⇐: By Lemma 3.2.11, there exists h ∈ H(∆i) such that x = x′h. Since πi+1(h) ∈
Ni+1 and πi+1(x′) = 1, we have πi+1(x) = πi+1(x′)πi+1(h) ∈ Ni+1.
⇒: Since B is orbit-ordered, there exist 1 ≤ t ≤ u ≤ m such that H(β1,β2,...,βt) = H(∆i)

and H(β1,β2,...,βu) = H(∆i+1). So (βt+1, βt+2, . . . , βu) is a base of πi+1(H(∆i)) = Ni+1.
Since πi+1(x) ∈ Ni+1, the sifting procedure does not terminate until after we have
considered the image of βu. More specifically, there exists u ≤ s ≤ m + 1 and ri ∈ Ri
for all 1 ≤ i ≤ s−1 such that x′ = xr−1

t+1r
−1
t+2 . . . r

−1
s−1. Hence x

′ fixes (βt+1, βt+1, . . . , βu).
Therefore πi+1(x′) is an element of Ni+1 fixing the base of Ni+1, so πi+1(x′) = 1.

3.3 Algorithm

In this section, we present an algorithm to compute the finest disjoint direct product
decomposition of a given permutation group H = 〈X〉 ≤ Sn and show that it has
polynomial time complexity in terms of |X|n.

Recall Notation 3.1.2. For 1 ≤ i ≤ k, let Pi be as in Definition 3.2.3. As the base
case, we begin with P1 := 〈{1}〉 and we will compute Pi+1 iteratively using Proposi-
tion 3.2.4.

Our algorithm to compute the finest disjoint direct product decomposition is pre-
sented in Algorithm 3. This algorithm computes a base and an initial strong generating
set for H and then calls DDPD from Algorithm 4 repeatedly to calculate the Pi.

Algorithm 3 Finding the finest disjoint direct product decomposition of H
Input: H ≤ Sn by a generating set X
Output: Pk
1: Fix an ordering Ω1,Ω2, . . . ,Ωk of the H-orbits
2: Find an orbit-ordered base B of H with respect to the ordering of H-orbits
3: Compute a strong generating set X1 of H relative to B
4: Initialise P1 = 〈{1}〉
5: for i ∈ [1, 2, .., k − 1] do
6: Xi+1,Pi+1 ← DDPD(i, B,Xi,Pi)
7: end for
8: return Pk

We give an example for Algorithm 4.

Example 3.3.1 (running example). Consider H in Example 3.2.9. We have seen that
P2 = 〈{1} | {2}〉 and X is 2-separable. To compute P3, initialise S := {}. Observe

50 Chapter 3: Disjoint Direct Product Decomposition

Algorithm 4 Finding the finest disjoint direct product decomposition of Πi+1(H)

Input: Integer 1 ≤ i ≤ k, base B of H, partition Pi = 〈C1 | C2 | . . . | Cr〉 of
{1, 2, . . . , k} and an i-separable generating set Xi of H
Output: Pi+1 and an (i+ 1)-separable generating set Xi+1 of H
1: procedure DDPD(i, B, Xi, Pi)
2: S ← {}
3: Xi+1 ← {}
4: for x ∈ Xi do
5: if x 6∈ H(∆i) then
6: Find cell Cj of Pi such that Πi(x) ∈ ΠCj (H)× 1i\Cj
7: x′ ← siftee of x by H(∆i) using the partial stabiliser chain defined by B

. see Definition 3.2.12
8: Add x′ to Xi+1

9: if πi+1(x′) 6= 1 then
10: Add Cj to S
11: end if
12: else
13: Add x to Xi+1

14: end if
15: end for
16: C ← (

⋃
Cj∈S

Cj) ∪ {i+ 1}

17: Pi+1 ← the partition consisting of cell C and all other cells Cj of Pi such that
Cj 6∈ S

18: return Xi+1,Pi+1

19: end procedure

that Π2(x1) ∈ Π1(H) × 12 and x1 6∈ H(∆2). Sifting x1 by H(∆2) gives us a siftee
(1, 2, 3). Similarly, Π2(x2) ∈ Π2(H) × 11 and x2 6∈ H(∆2) with a siftee (4, 5, 6). Now
Π2(x3) ∈ Π2(H) × 11 and x3 6∈ H(∆2) has a siftee (5, 6)(8, 9)(11, 12), which has a
non-trivial projection on Ω3 = {7, 8, 9}. So we add {2} to S. Since x4 ∈ H(∆2) we
add x4 to X3. Therefore, we set C = S ∪ {3} = {2, 3}, so P3 = 〈{1} | {2, 3}〉 and
X3 = {(1, 2, 3), (4, 5, 6), (5, 6)(8, 9)(11, 12), (7, 8, 9)(10, 11, 12)}.

Lemma 3.3.2. For 1 ≤ i ≤ k, the sets Xi computed in Algorithms 3 and 4 are strong
generating sets of H with respect to the base B = (β1, β2, . . . , βm) defined on line 2 of
Algorithm 3.

Proof. We proceed by induction on i. Clearly X1 is a strong generating set of H with
respect to B. Suppose that Xi is a strong generating set of H with respect to B.
First note that since each x ∈ Xi ∩H(∆i) is also in Xi+1 and a siftee of x ∈ Xi\H(∆i)

by H(∆i) is not in H(∆i), we have Xi ∩ H(∆i) = Xi+1 ∩ H(∆i). Let 0 ≤ s ≤ m and
consider H [s+1] = H(β1,β2,...,βs). Since B is an orbit-ordered base, either H [s+1] ⊆ H(∆i)

or H(∆i) ⊆ H [s+1]. For both cases, we will show that H [s+1] = 〈Xi+1 ∩H [s+1]〉.

3.3. Algorithm 51

Suppose first that H [s+1] ⊆ H(∆i). Then

Xi ∩H [s+1] = Xi ∩H(∆i) ∩H
[s+1] = Xi+1 ∩H(∆i) ∩H

[s+1] = Xi+1 ∩H [s+1].

Since Xi is a strong generating set, we have H [s+1] = 〈Xi ∩H [s+1]〉 = 〈Xi+1 ∩H [s+1]〉.
Suppose instead that H(∆i) ⊆ H [s+1]. Certainly 〈Xi+1 ∩ H [s+1]〉 ≤ H [s+1]. To show
the reverse containment, since Xi is a strong generating set, it suffices to show that
Xi ∩ H [s+1] ⊆ 〈Xi+1 ∩ H [s+1]〉. Let x ∈ Xi ∩ H [s+1]. If x ∈ H(∆i), then by the
construction of Xi+1, we have x ∈ Xi+1, hence x ∈ Xi+1 ∩ H [s+1]. Else suppose
that x ∈ (Xi ∩ H [s+1])\H(∆i). Then there exists a siftee x′ of x by H(∆i) such that
x′ ∈ Xi+1. By Lemma 3.2.11, there exists g ∈ H(∆i) ≤ H [s+1] such that x = x′g. Then
x′ = xg−1 ∈ H [s+1] and so x′ ∈ Xi+1 ∩H [s+1]. Observe that

H(∆i) = 〈Xi ∩H(∆i)〉 since Xi is a strong generating set

= 〈Xi+1 ∩H(∆i)〉 since Xi ∩H(∆i) = Xi+1 ∩H(∆i)

⊆ 〈Xi+1 ∩H [s+1]〉 since H(∆i) ⊆ H
[s+1].

So g ∈ 〈Xi+1 ∩H [s+1]〉 and hence x ∈ 〈Xi+1 ∩H [s+1]〉.

Lemma 3.3.3. Let 1 ≤ i ≤ k − 1. Let Xi be an i-separable strong generating set of H
and let Pi = 〈C1 | C2 | . . . | Cr〉 be as in Definition 3.2.3. Let Xi+1 and Q be the output
of DDPD(i, B,Xi,Pi) from Algorithm 4. Then

1. Pi+1 = Q.

2. Xi+1 is an (i+ 1)-separable strong generating set of H.

Hence Algorithm 4 is correct.

Proof. Part 1: We show that the set S constructed from Algorithm 4 is the same as
the set in Proposition 3.2.4, from which the result will follow. Observe that we add Cj
to S in line 10 if and only if there exists x ∈ Xi with non-trivial projection Πi(x) such
that Πi(x) ∈ ΠCj (H)× 1i\Cj and πi+1(x′) 6= 1, where x′ is a siftee of x by H(∆i). Since
Xi is i-separable, by Lemmas 3.2.10 and 3.2.13, such an x ∈ Xi exists if and only if
θi(ΠCj (H)×1i\Cj) 6= Ni+1. That is, ΠCj (H)×1i\Cj 6⊆ Ker(θi). The result then follows
from Proposition 3.2.4.
Part 2: Let y ∈ Xi+1. We show that if Πi+1(y) 6= 1, then there exists a unique cell C ′

of Pi+1 such that Πi+1(y) ∈ ΠC′(H)× 1i+1\C′ .
By the construction of Xi+1, either y ∈ Xi ∩H(∆i) or there exists x ∈ Xi\H(∆i) such
that y is a siftee of x by H(∆i). Suppose first that y ∈ Xi ∩ H(∆i), so Πi(y) = 1. If
Πi+1(y) 6= 1, then πi+1(y) 6= 1 and so ΠC(y) 6= 1, where C is as defined in line 16. Since
i+ 1\C = i\C ⊆ i, we have Πi+1\C(y) = 1. So C is the unique cell of Pi+1 such that
Πi+1(y) = ΠC(y)× 1i+1\C ∈ ΠC(H)× 1i+1\C .
Suppose now that y is a siftee of some x ∈ Xi\H(∆i) by H(∆i). By Lemma 3.2.11, there

52 Chapter 3: Disjoint Direct Product Decomposition

exists g ∈ H(∆i) such that x = yg. Then since Πi(g) = 1, we have Πi(x) = Πi(y). As
Xi is i-separable, there exists exactly one cell Cj of Pi such that

Πi(y) = Πi(x) ∈ ΠCj (H)× 1i\Cj .

If Cj 6∈ S, then Cj is a cell of Pi+1 and so Πi+1(y) ∈ ΠCj (H) × 1i+1\Cj . Otherwise if
Cj ∈ S, then Πi+1(y) ∈ ΠCj∪{i+1}(H)× 1i\Cj . In particular, since Cj ∪{i+ 1} ⊆ C, we
have Πi+1(y) ∈ ΠC(H)× 1i+1\C .

Theorem 3.3.4. Given H ≤ Sn by a generating set X, Algorithm 3 computes the finest
disjoint direct product decomposition of H in time polynomial in |X|n.

Proof. Let Q := 〈C1 | C2 | . . . | Cr〉 be the partition computed by Algorithm 3. Then
by Part 1 of Lemma 3.3.3, Q = Pk, and so H = ΠC1(H) × ΠC2(H) × . . . × ΠCr(H) is
the finest disjoint direct product decomposition of H.
It remains to show that Algorithm 3 runs in polynomial time. By Proposition 2.1.2 and
Theorem 2.1.7, lines 1 and 3 run in polynomial time. As in Remark 3.2.6, we can get an
orbit-ordered base in polynomial time. Since Algorithm 4 is called at most O(n) times,
it suffices to show that Algorithm 4 runs in time polynomial in |X|n.
By Parts 2 and 3 of Theorem 2.1.9, lines 5 and 7 can be done in polynomial time. Line
6 can be done by iterating through each cell Cj of Pi and checking if ΠCj (x) 6= 1. Since
Pi has at most k cells, this can be done in O(k) time. Therefore the result follows.

Hence Theorem 3.0.2 now follows.

3.4 Experiments

In this section, we will investigate the practical performance of our algorithm for finding
the finest disjoint direct product decomposition of a permutation group. As well as
showing the performance of our algorithm, we will show how it can be used to improve
the performance of a range of important group-theoretic problems. Our algorithm is
implemented in GAP 4.11 [GAP20] 1.

We will test our algorithm on randomly created groups. The creator we use in this
chapter is very straightforward and does not claim to produce all groups with equal
probability. It is costly to attain better distribution as we require random normal
subgroups and isomorphisms, hence this method is chosen for its simplicity and speed.

The creator takes three parameters, a transitive permutation group G and two
integer constants r and s. The algorithm will produce a permutation group which
is the disjoint direct product of r groups. Each of these direct factors is a subdirect
product of Gs that is d.d.p. indecomposable. The algorithm runs in two stages.

1The implementation for the experiments in this section is done by Dr Christopher Jefferson, which
better exploits the stabiliser chain data structure in GAP. An independent implementation by the
author is included in the supplementary files. The difference in terms of the runtimes of the two
implementations is minor.

3.4. Experiments 53

The first stage is implemented by a function MakeSubdirect(G, s) which pro-
duces a random subdirect product of s copies of G that is d.d.p. indecomposable.
MakeSubdirect(G, s) works by taking a random integer i ∈ {2, 3, . . . , s} and then
taking the group H generated by i random elements of Gs. If H is d.d.p. indecompos-
able, and its projection onto each of the s copies of G is surjective, then it is returned,
else this procedure repeats.

The second stage simply runs MakeSubdirect(G, s) r times, and takes the (dis-
joint) direct product of these r groups. Finally, we conjugate this group by a random
permutation on the set of points moved by this group, so the decomposition does not
follow the natural ordering of the integers.

Our algorithms are split into two sections. Firstly we compare our algorithm against
the algorithm of Donaldson and Miller [DM09]. Secondly, to demonstrate that our
algorithm has immediate practical value, we show how a few functions in GAP can
easily be sped up by the knowledge of a disjoint direct product decomposition.

3.4.1 Comparison to Donaldson and Miller

We first compare to Donaldson and Miller’s algorithm. Donaldson and Miller present
two algorithms, an incomplete algorithm and a complete algorithm. We will not compare
against their incomplete algorithm, as it is extremely fast but requires separable strong
generating sets. Donaldson and Miller were unable to find a graph where the generating
set of the automorphism group produced by Nauty [MP14] is not separable. We were
able to find graphs where Nauty does not produce a separable generating set 2. Also, the
most advanced graph automorphism finders, such as Traces [MP14], perform random
dives which produce random automorphisms. This means that generating sets produced
by Traces will not, in general, be separable.

When implementing Donaldson and Miller’s complete algorithm, we were forced to
make some implementation choices, the most significant of which is the ordering in which
the algorithm tries to partition the orbits (the first line of Algorithm 5 in [DM09]). We
implemented this by trying the partitions in order of increasing sizes of the smaller part
of the partition. This has the advantage that when the finest disjoint direct product
decomposition has a factor with few orbits the algorithm will run relatively quickly, but
it has no effect on the algorithm’s worst case complexity.

We gather our results in Figure 3.1. Each row of Figure 3.1 gives the result for
10 instances of H, created as above. Each instance of H has rs orbits with the finest
disjoint direct product decomposition consisting of r direct factors with s orbits each,
and each transitive constituent of H is permutation isomorphic to G. For each G, r

and s, we report the median time (“Median”) and the number of completed instances
(“#”) of the 10 instances of H, using both Algorithm 5 of [DM09] (“Donaldson”) and
Algorithm 3 (“Our Algorithm”). The results are consistent with the theory. Since our

2One example can be found in the supplemental file Chapter3-DDPD/nonSeparableExample.g.

54 Chapter 3: Disjoint Direct Product Decomposition

algorithm is polynomial, it scales much better than the algorithm in [DM09].

G r s Donaldson Our Algorithm
Median # Median #

D8 4 4 0.04 10 0.00 10
D8 6 4 0.16 10 0.01 10
D8 8 4 0.54 10 0.01 10
D8 10 4 2.18 10 0.02 10

A4 4 4 2.47 10 0.01 10
A4 6 4 12.47 10 0.03 10
A4 8 4 158.09 10 0.04 10
A4 10 4 490.54 5 0.05 10

S4 4 4 3.37 10 0.02 10
S4 6 4 15.99 10 0.04 10
S4 8 4 393.86 8 0.06 10
S4 10 4 N/A 0 0.07 10

Figure 3.1: Comparison of DDPD algorithms

3.4.2 Application to GAP

In this section, we will see how some functions in GAP can easily be sped up by the
knowledge of a disjoint direct product decomposition. This is not intended to be an
exhaustive list, but simply to demonstrate how, for a selection of common problems, cal-
culating a disjoint direct product decomposition can significantly improve performance.
We experiment on the following GAP functions.

DerivedSubgroup - The derived subgroup of a group H is the direct product of
the derived subgroup of each disjoint direct factor of H.

NrConjugacyClasses - The number of conjugacy classes of a group H is the
product of the number of conjugacy classes of each disjoint direct factor of H.

CompositionSeries - A composition series of a group H can be constructed from
composition series of the direct factors of H.

MinimalNormalSubgroups - If each disjoint direct factor of H is non-abelian,
the minimal normal subgroups of a group H is the union of the minimal normal
subgroups of each disjoint direct factor of H.

In our experiments, we run each row of our tables ten times. Each run is given a limit
of 10 minutes and 4GB of memory. We give the median time in seconds (or N/A when
less than 6 instances finished successfully). For the inner group G we consider the al-
ternating group (An), symmetric group (Sn), dihedral groups (D2n) of varying degree n,

3.5. Conclusion and future work 55

and also TransitiveGroup(16, 712) (Trans(16, 712)) and TransitiveGroup(16, 713)

(Trans(16, 713)) from the Transitive Groups Library [Hul17].
Each row of the tables in Figures 3.2 to 3.5 gives the results for 10 random groups H,

each with rs orbits, where the projection ofH onto each orbit is permutation isomorphic
to G, and H has the finest disjoint direct decomposition consisting of r direct factors
with s orbits each. The columns “Full Group” and “Decomposed Group” refers to the
computation with the original group H and the computation with the disjoint direct
factors of H respectively. The column “Decomposition” refers to the computation of
the finest disjoint direct product decomposition of H. For each of these columns, we
report the median time (in seconds) required to compute the specified problems of the
10 instances under the subcolumns “Median”, and the number of instances completed
within the time and memory limits under the subcolumns “#”.

Fro all of our experiments apart from CompositionSeries, the time taken to find
the finest disjoint direct product decomposition and solve the problem on the decom-
posed group is always faster than solving the problem on the original full group. In the
case of DerivedSubgroup (Figure 3.2), we speed up performance by up to a factor
of 10. In the case of NrConjugacyClasses (Figure 3.3), CompositionSeries (Fig-
ure 3.4) and MinimalNormalSubgroups (Figure 3.5), we are able to solve problems
which previously ran out of memory or time, in under a second.

G r s Full Group Decomposed Group Decomposition
Median # Median # Median #

D8 12 4 0.33 10 0.00 10 0.20 10
D8 16 4 1.07 10 0.00 10 0.55 10
D8 20 4 2.53 10 0.00 10 1.20 10

A4 12 4 2.34 10 0.01 10 0.28 10
A4 16 4 7.53 10 0.01 10 0.66 10
A4 20 4 19.76 10 0.01 10 1.64 10

S4 12 4 7.36 10 0.01 10 0.89 10
S4 16 4 27.89 10 0.02 9 2.34 10
S4 20 4 65.85 10 0.02 10 5.37 10

Figure 3.2: Performance of DDPD for DerivedSubgroup

3.5 Conclusion and future work

In this chapter, we have shown that the finest disjoint direct product decomposition
of a given group can be computed efficiently and can be used to speed up various
permutation group problems. Moreover, as demonstrated in [DM09, Gra11], the disjoint
direct product decomposition of a group has applications beyond computational group
theory.

56 Chapter 3: Disjoint Direct Product Decomposition

G r s Full Group Decomposed Group Decomposition
Median # Median # Median #

A3 2 4 0.00 10 0.00 10 0.00 10
A3 4 4 0.08 10 0.00 10 0.00 10
A3 6 4 21.50 6 0.00 10 0.00 10

D8 2 4 0.23 10 0.00 10 0.00 10
D8 4 4 N/A 2 0.00 10 0.00 10
D8 6 4 N/A 0 0.01 10 0.00 10

S4 2 4 50.52 10 0.28 10 0.00 10
S4 4 4 N/A 0 0.58 10 0.00 10
S4 6 4 N/A 0 0.96 10 0.02 10

Figure 3.3: Performance of DDPD for NrConjugacyClasses

G r s Full Group Decomposed Group Decomposition
Median # Median # Median #

A4 4 3 0.00 10 0.00 10 0.00 10
A4 12 3 0.06 10 0.01 10 0.11 10
A4 20 3 0.22 10 0.02 10 0.68 10

S4 4 3 0.01 10 0.00 10 0.00 10
S4 12 3 0.15 10 0.02 10 0.32 10
S4 20 3 0.49 10 0.03 10 1.70 10

D32 4 3 0.01 10 0.00 10 0.00 10
D32 12 3 0.11 10 0.02 10 0.27 10
D32 20 3 0.45 10 0.04 10 1.87 10

Trans(16, 712) 4 3 0.02 10 0.01 10 0.03 10
Trans(16, 712) 12 3 0.36 10 0.03 10 1.25 10
Trans(16, 712) 20 3 1.52 10 0.06 10 8.72 10

Trans(16, 713) 4 3 0.64 10 0.02 10 0.03 10
Trans(16, 713) 12 3 80.49 10 0.07 10 1.32 10
Trans(16, 713) 20 3 N/A 0 0.12 10 8.57 10

Figure 3.4: Performance of DDPD for CompositionSeries

3.5. Conclusion and future work 57

G r s Full Group Decomposed Group Decomposition
Median # Median # Median #

D8 4 4 1.88 10 0.03 10 0.00 10
D8 6 4 N/A 4 0.04 10 0.02 10
D8 8 4 N/A 0 0.06 10 0.12 10
D8 10 4 N/A 0 0.07 10 0.35 10

A4 4 4 1.60 10 0.23 10 0.01 10
A4 6 4 6.49 10 0.50 10 0.02 10
A4 8 4 27.66 10 0.47 10 0.20 10
A4 10 4 57.10 10 0.55 10 0.39 10

S4 4 4 4.59 10 0.40 10 0.01 10
S4 6 4 20.44 10 0.58 10 0.04 10
S4 8 4 102.73 10 0.80 10 0.75 10
S4 10 4 254.37 10 1.23 10 1.09 10

Figure 3.5: Performance of DDPD for MinimalNormalSubgroups

While we show the disjoint direct product decomposition can be extremely useful,
we are not suggesting it to be employed as an initial subprocedure of solving all the
problems we use in our experiments. This is because adding this subprocedure will
impose additional computation time on all calls of the problem that could be a waste
of time if the group is d.d.p. indecomposable. Using efficient heuristics to only add this
subprocedure for some groups still has the same problem with the added cost and raises
an issue of determining the heuristics. Therefore, we propose that the computation of
the finest disjoint direct product decomposition be available in GAP as a function, and
leave it up to the user to decide if the decomposition would help the problem in hand.

An obvious piece of future work is to determine other problems, group theoretic or
otherwise, that can benefit from the knowledge of its disjoint direct product decompo-
sition. We believe that the disjoint direct product decomposition has more potential in
groups arising from real world problems, as these are more likely to be highly intransi-
tive.

58 Chapter 3: Disjoint Direct Product Decomposition

Chapter 4

Normalisers of Highly Intransitive
Groups

In this chapter, we will compute the normalisers NSn(H) of intransitive groups H ≤ Sn.
We will see how certain structures of H can be used to reduce the search tree for
computing NSn(H). We do so in two ways: firstly we use the group structure to
create conjugacy invariant functions and refiners (see Definitions 2.4.10 and 2.4.13), and
secondly we see how these structures can be used to reduce the computation of NSn(H)

into smaller problems. We will also give an algorithm for computing normalisersNSn(H)

of intransitive H ≤ Sn with pairwise permutation isomorphic transitive constituents.
The algorithm uses conjugacy invariant functions and refiners to produce a subgroup S
of Sn containing NSn(H).

More specifically, the structure of the chapter is as follows. In Section 4.1, we
use the equivalence of orbits to give conjugacy invariant functions and refiners, and
then reduce the computation of NSn(H) to computing the normaliser of a group with
a smaller degree. In Section 4.2, we first use disjoint direct product decompositions
to give conjugacy invariant functions and refiners. If H has a disjoint direct product
decomposition with more than two factors, we show that NSn(H) can be computed by
computing the normaliser of each disjoint direct factor, and then solving the conjugacy
problem for each pair of the factors. In Section 4.3, we use the permutation isomorphism
classes of certain projections to give some conjugacy invariant functions and refiners.
We will introduce the class InP(A) consisting of groups whose transitive constituents
are all permutation isomorphic to a transitive group A ≤ Sm, and then give a proper
subgroup of Sn containing NSn(H) for H ≤ Sn in class InP(A). In Section 4.4, we
give an algorithm which uses the conjugacy invariant functions and refiners from the
previous sections to compute a group S ≤ Sn containing NSn(H), where H is in InP(A)

for some transitive group A, and so NSn(H) = NS(H). Lastly in Section 4.5, we show
that this subgroup S ≤ Sn can be used to speed up the computation of NSn(H).

In this chapter, we will take the natural inclusion map of Sym(Γ) into Sym(∆) for
all Γ ⊆ ∆. For the rest of this chapter, let n be an integer and let Ω = {1, 2, . . . , n}.

59

60 Chapter 4: Normalisers of Highly Intransitive Groups

4.1 Equivalent orbits

Recall the definitions of equivalent orbits and ≡o from Definition 2.1.10. In this section,
we show how we can use equivalent orbits to obtain conjugacy invariant functions and
refiners. Then we show how we can use the equivalent orbits of H ≤ Sn to reduce the
computation of NSn(H) into computing the centraliser CSn(H) and the normaliser of a
group with a smaller degree.

4.1.1 Pruning with equivalent orbits

We start by showing that conjugation preserves the equivalence classes under ≡o.

Lemma 4.1.1. Let K,L ≤ Sn such that L = Kg for some g ∈ Sn. Then {Ωi | i ∈ I}
is an ≡o-class of K-orbits if and only if {Ωg

i | i ∈ I} is an ≡o-class of L-orbits.
Hence the normaliser NSn(H) permutes the ≡o-classes of H-orbits.

Proof. Let i, j ∈ I. Then Ωg
i and Ωg

j are orbits of L. We show that Ωg
i ≡o Ωg

j using
Lemma 2.1.12. Let l ∈ L and let k = lg

−1 ∈ K. By the forward implication of
Lemma 2.1.12, there exists an involution ν ∈ Sn with support Ωi ∪Ωj such that for all
k′ ∈ K, we have k′|Ωj = (k′|Ωi)ν . Then

(l|Ωgi)
g−1νg = ((k|Ωi)g)g

−1νg = (k|Ωi)νg = (k|Ωj)g = l|Ωgj ,

and (l|Ωgj)
g−1νg = l|Ωgi similarly. Since ν has support Ωi ∪ Ωi, its conjugate νg has

support Ωg
i ∪ Ωg

i . Therefore, by the backward implication of Lemma 2.1.12, we have
Ωg
i ≡o Ωg

i . The fact that inequivalent orbits maps to non-equivalent orbits follows by
symmetry.

Therefore we may use orbit equivalence to obtain a conjugacy invariant function
and a conjugacy invariant refiner. Recall that we denote the set of all subgroups of Sn
by S(Sn).

Lemma 4.1.2. For K ≤ Sn, let EK be the function from the set of orbits of K to N
such that EK(∆) gives the size of the equivalence class [∆]≡o .

1. Let Ψ be the function with domain S(Sn) such that Ψ(K) gives the multiset
{EK(∆) | for all orbits ∆ of K}. Then Ψ is a conjugacy invariant function.

2. Let Φ be the function with domain S(Sn)×Ω defined by Φ(K,α) = EK(∆) where
∆ is the K-orbit containing α. Then Φ is a conjugacy invariant refiner.

We denote Ψ and Φ by EquivOrbsCIF and EquivOrbsCIR respectively.

Proof. Let K,L ≤ Sn such that L = Kg for some g ∈ Sn.
Part 1: By Lemma 4.1.1, g maps each ≡o-class of K-orbits to an ≡o-class of L-orbits
with the same size. Hence Ψ(L) = Ψ(K).

4.1. Equivalent orbits 61

Part 2: Let α ∈ Ω and let ∆ be the K-orbit containing α. Then ∆g is the orbit of
L containing αg. By the argument in Part 1, we have EL(∆g) = EK(∆) and hence
Φ(K,α) = Φ(L,αg).

4.1.2 Degree reduction using equivalent orbits

In the last subsection, we saw how equivalent orbits are used to obtain a conjugacy
invariant function Ψ and refiner Φ. In this subsection, we use equivalent orbits of
H ≤ Sn to show that if ≡o is not the equality relation then the normaliser NSn(H) can
be computed by computing CSn(H) and the normaliser of a group with no equivalent
orbits and a smaller degree. Hence when convenient, we may assume that H has no
equivalent orbits.

We start by constructing a partition of some H-orbits based on the sizes of the
≡o-classes.

Definition 4.1.3. Let t, the Bi, Ωib and ψib for all 1 ≤ i ≤ t and 2 ≤ b ≤ |Bi| be as in
Proposition 2.1.13. Let Pe(H) be the partition of Ω11,Ω21, . . . ,Ωt1 such that Ωi1 and
Ωj1 are in the same cell if and only if |Bi| = |Bj |. Let Γ :=

⋃t
i=1 Ωi1.

Definition 4.1.4. With the notation of Definition 4.1.3, let S be the stabiliser of Pe(H)

in Sym(Γ). Let the maps ψij : Ωi1 → Ωij be as in Proposition 2.1.13, and let ψi1 be the
identity mapping. Let θ : NS(H|Γ)→ Sn be defined by

for ν ∈ NS(H|Γ), if α ∈ Ωib and Ων
i1 = Ωj1, define αθ(ν) = αψib

−1
νψjb ∈ Ωjb.

One can check that the θ(ν) is indeed in Sn. Since the definition in Definition 4.1.4
is rather technical, we include an example here.

Example 4.1.5. Let H = 〈(1, 2)(3, 4), (5, 6)(7, 8)〉. Then Ω11 := {1, 2} and Ω12 :=

{3, 4} are equivalent H-orbits, with the map ψ12 : Ω11 → Ω12 defined by 1 7→ 3

and 2 7→ 4 as a bijection witnessing the orbit equivalence. Similarly Ω21 := {5, 6}
and Ω22 := {7, 8} are equivalent H-orbits, and the map ψ22 : Ω21 → Ω22 defined
by 5 7→ 7 and 6 7→ 8 witnesses the equivalence. So we have ψ12 = (1, 3)(2, 4) and
ψ22 = (5, 7)(6, 8).
Let Γ = {1, 2, 5, 6}, S = Sym(Γ) and H|Γ = 〈(1, 2), (5, 6)〉. So ν := (1, 6)(2, 5) ∈
NS(H|Γ). Let θ : NS(H|Γ)→ Sn be as in Definition 4.1.4. Then θ(ν) maps 1 ∈ Ω11 to
1()∗(1,6)(2,5)∗() = 6. Similarly 2θ(ν) = 5, 5θ(ν) = 2 and 6θ(ν) = 1.
Now consider 3 ∈ Ω12. Then θ(ν) maps 3 to 3(1,3)(2,4)∗(1,6)(2,5)∗(5,7)(6,8) = 8. Similarly
4θ(ν) = 7, 7θ(ν) = 4 and 8θ(ν) = 3. So θ(ν) = (1, 6)(2, 5)(3, 8)(4, 7).
Lastly observe that θ(ν) ∈ NSn(H).

Proposition 4.1.6. With the notation of Definition 4.1.3, let S be the stabiliser of
Pe(H) in Sym(Γ), and let θ : NS(H|Γ)→ Sn be as in Definition 4.1.4. Then NSn(H) =

〈Im(θ), CSn(H)〉.

62 Chapter 4: Normalisers of Highly Intransitive Groups

Proof. ≥: It suffices to show that Im(θ) ⊆ NSn(H). Let h ∈ H and ν ∈ NS(H|Γ).
Since (h|Γ)ν ∈ H|Γ, there exists h′ ∈ H such that h′|Γ = (h|Γ)ν . We will show that
hθ(ν) = h′.
We first show that hθ(ν)|Γ = h′|Γ. Let Ων

i1 = Ωj1 and let α ∈ Ωi1. Then αθ(ν) = αν ∈ Γ

as ψi1 = ψj1 = 1. Therefore, hθ(ν)|Γ = (h|Γ)ν = h′|Γ.
Let 1 ≤ i ≤ t and 2 ≤ b ≤ |Bi|. Then by definition of ψib,

hθ(ν)|Ωib = (hθ(ν)|Ωi1)ψib = (h′|Ωi1)ψib = h′|Ωib ,

as required.
≤: Let g ∈ NSn(H). By Lemma 4.1.1, g permutes the equivalence classes of ≡o. By
Proposition 2.1.13, CSn(H) induces the full symmetric group on each equivalence class of
orbits. So, there exists c ∈ CSn(H) such that gc fixes Γ setwise. Then (gc)|Γ ∈ NS(H|Γ).
Let g′ := θ((gc)|Γ) ∈ Im(θ) and h ∈ H. Then (h|Γ)gc = (h|Γ)g

′ and so hgc = hg
′ . Then

gcg′−1 ∈ CSn(H) and hence g ∈ 〈Im(θ), CSn(H)〉.

Hence, the computation of NSn(H) can be reduced to computing CSn(H) and the
normaliser NS(H|Γ) and its image under the map θ.

4.2 Disjoint direct product decompositions

Recall the definition of disjoint direct product decomposition from Definition 3.0.1. In
this section, we use the disjoint direct product decompositions of groups to obtain a
conjugation invariant function and conjugation invariant refiner. We will also show
in Proposition 4.2.6 that we can compute the normaliser of a group with non-trivial
disjoint direct product decomposition by computing the normaliser of each factor and
solving the conjugacy problem for each pair of the factors.

4.2.1 Pruning with disjoint direct product decompositions

In this subsection, we see how the disjoint direct product decomposition gives us a
means of proving that two groups are not conjugate in a symmetric group.

Lemma 4.2.1. Let K,L ≤ Sn such that L = Kg for some g ∈ Sn. If Ki is a finest
disjoint direct factor of K, then Kg

i is a finest disjoint direct factor of L.

Proof. We first show that Kg
i is a disjoint direct factor of L. Since Ki is a disjoint

direct factor of K, there exists J ≤ K with support disjoint to Supp(Ki) such that
K = Ki × J . Then L = Kg

i × Jg. Since K
g
i and Jg have disjoint supports, this gives a

disjoint direct product decomposition of L. Hence Kg
i is a disjoint direct factor of L.

It remains to show that Kg
i is d.d.p. indecomposable. Aiming for a contradiction,

suppose that Kg
i = J1 × J2 is a disjoint direct product decomposition. Then Ki =

Jg
−1

1 × Jg
−1

2 . Since J1 and J2 have disjoint supports, Jg
−1

1 and Jg
−1

2 also have disjoint

4.2. Disjoint direct product decompositions 63

supports. Therefore this gives a disjoint direct product decomposition of Ki, which is
a contradiction to the fact that Ki is a finest disjoint direct factor of K.

Using the previous lemma, we get the following conjugacy invariant function and
refiner:

Lemma 4.2.2. Let N be the function with domain S(Sn) to N such that N(K) is the
number of orbits of K.

1. Let Ψ be the function with domain S(Sn) such that Ψ(K) is the multiset

{N(Ki) | for all finest disjoint direct factors Ki of K}.

Then Ψ is a conjugacy invariant function.

2. Let Φ be the function with domain S(Sn)×Ω defined by Φ(K,α) = N(Ki), where
Ki is the finest disjoint direct factor of K such that α ∈ Supp(Ki). Then Φ is a
conjugacy invariant refiner.

We denote Ψ and Φ by DdpdCIF and DdpdCIR respectively.

Proof. Let K,L ≤ Sn such that L = Kg for some g ∈ Sn.
Part 1: Let Ki be a finest disjoint direct factor of K. Then by Lemma 4.2.1, Kg

i is a
finest disjoint direct factor of L. Since conjugacy preserves orbit structures, the number
of orbits of Ki is equal to the number of orbits of Kg

i . Therefore Ψ(K) = Ψ(L).
Part 2: Let α ∈ Ω and let Ki be a finest disjoint direct factor of K such that α ∈
Supp(Ki). Then αg ∈ Supp(Kg

i) and by Lemma 4.2.1, Kg
i is a finest disjoint direct

factor of L. As in the proof of Part 1, Ki and Kg
i have the same number of orbits,

therefore Φ(K,α) = Φ(L,αg).

We may obtain stronger conjugacy invariant functions and refiners by having N(K)

return the multiset {|∆| | for all K-orbits ∆}. We can also make the conjugacy invariant
refiner stronger by defining Φ(K,α) to return a tuple (N(Ki), s), where Ki is the finest
disjoint direct factor of K such that α ∈ Supp(Ki) and s is the size of the Ki-orbit
containing α. Additionally, we may use the orders of the disjoint direct product factors
to obtain conjugacy invariant functions and refiners. None of these is included in our
implementation.

4.2.2 Computing normalisers using disjoint direct product decompo-
sitions

In the last subsection, we showed that disjoint direct product decomposition can be used
to prune and refine the search tree. In this subsection, we show that we can use the
disjoint direct product decomposition of H to reduce the normaliser computation into
polynomially many smaller problems. More specifically, we reduce the computation of

64 Chapter 4: Normalisers of Highly Intransitive Groups

NSn(H) into computing the normaliser of each factor and solving the conjugacy problem
for each pair of factors.

For the rest of the subsection, letH ≤ Sn and letH = H1×H2×. . .×Hr be the finest
disjoint direct product decomposition of H. For 1 ≤ i ≤ r, let ∆i = Supp(Hi). We
will consider each Hi as a subgroup of Sym(∆i). Recall that we also identify Sym(∆i)

as a subgroup of Sym(Γ) for sets Γ containing ∆i. Let Ω = ∪̇ri=1∆i be the support of
H. We start by showing that certain elements of NSn(H) give the conjugacy of certain
pairs of disjoint direct factors of H, and vice versa.

Lemma 4.2.3. Let 1 ≤ i, j ≤ r and let ∆ = ∆i∪̇∆j. Then there exists ν ∈ NSn(H)

such that ∆ν
i = ∆j if and only if Hi and Hj are conjugate in Sym(∆).

Proof. ⇒: Let ν ∈ NSn(H) such that ∆ν
i = ∆j . Define g to be the involution in

Sym(∆) such that αg = αν for all α ∈ ∆i. We will show that Hg
i = Hj .

Since Supp(Hi) = ∆i, we have Hg
i = Hν

i . By Lemma 4.2.1, the group Hν
i is a finest

disjoint direct factor of Hν = H with support ∆ν
i = ∆j = Supp(Hj). Then by Propo-

sition 3.2.2, the finest disjoint direct product decomposition of a group is unique, so
Hg
i = Hν

i ≤ Hj . Similarly since (g−1)|∆j = (ν−1)|∆j , the group Hg−1

j = Hν−1

j is a

finest disjoint direct factor of Hν−1
= H with support Supp(Hi), so H

g−1

j ≤ Hi. There-
fore Hg

i = Hj and hence Hi and Hj are conjugate in Sym(∆).
⇐: Let g ∈ Sym(∆) such that Hg

i = Hj . Let g′ ∈ Sn be the involution with support ∆

such that αg′ = αg for all α ∈ ∆i. Then the conjugation by g′ permutes Hi and Hj , and
fixes all other Hs for s 6= i, j. Therefore Hg′ = H. Hence g′ is an element of NSn(H)

such that ∆g
i = ∆j .

We gather the involutions witnessing the conjugacy of Hi and Hj in a group E. We
will show in Proposition 4.2.6 that E and the NSym(∆i)(Hi) generate NSn(H).

Definition 4.2.4. Let ∼c be the equivalence relation on H1, H2, . . . ,Hr such that
Hi ∼c Hj if Hi and Hj are conjugate in Sym(∆i ∪∆j). Without loss of generality, let
[H1]∼c , [H2]∼c , . . . , [Ht]∼c be the equivalence classes of ∼c.
For all 1 ≤ i, j ≤ r such that Hi ∼c Hj , let cij be an involution in Sn with support
∆i ∪∆j such that Hcij

i = Hj . We take cii = 1 for all i.
For 1 ≤ i ≤ t, let Ei := 〈cij | Hj ∈ [Hi]∼c〉. Let E := 〈Ei | 1 ≤ i ≤ t〉.

We first show that the permutations of the disjoint factorsHi induced by conjugation
by E form a direct product of symmetric groups.

Lemma 4.2.5. Let E be as in Definition 4.2.4. Then for ν ∈ NSn(H), there exists
ε ∈ E such that Hν

i = Hε
i for all 1 ≤ i ≤ r.

Proof. Let ∼c be as in Definition 4.2.4. By the forward implication of Lemma 4.2.3,
conjugation by ν permutes the finest disjoint direct factors. Therefore the permutation
σ of the factors Hi induced by ν is an element of

D := Sym([H1]∼c)× Sym([H2]∼c)× . . .× Sym([Ht]∼c).

4.3. Permutation isomorphism of projections 65

Let 1 ≤ i ≤ t and let Ei be as in Definition 4.2.4. Since Sym([Hi]∼c) is generated by
{(Hi, Hj) | for all Hj ∈ [Hi]∼c} and each cij induces the permutation (Hi, Hj) of the
disjoint factors, the permutations of the elements in [Hi]∼c induced by the conjugation
of Ei form the symmetric group Sym([Hi]∼c).
As E is generated by the Ei, which have disjoint supports, the permutations of the
factors Hi induced by the conjugation of E form the direct product D. Therefore, there
exists ε ∈ E such that Hν

i = Hε
i for all 1 ≤ i ≤ r.

Lastly we show that to compute NSn(H), it suffices to compute NSym(∆i)(Hi) for
each 1 ≤ i ≤ r and the group E in Definition 4.2.4. We compute E by solving the
conjugacy problem for disjoint direct factors Hi and Hj for all pairs 1 ≤ i, j ≤ r.

Proposition 4.2.6. Let H ≤ Sn and let H = H1 ×H2 × . . .×Hr be the finest disjoint
direct product decomposition of H. For each 1 ≤ i ≤ r, let ∆i := Supp(Hi). Let E and
t be as in Definition 4.2.4. Then

NSn(H) = 〈NSym(∆1)(H1)×NSym(∆2)(H2)× . . .×NSym(∆t)(Ht), E〉,

where we identify the direct product as the corresponding subgroup of Sn.

Proof. ≥: As in the proof of the backwards implication of Lemma 4.2.3, each cij is in
NSn(H), so E ≤ NSn(H). Let ν ∈ NSym(∆1)(H1)×NSym(∆2)(H2)× . . .×NSym(∆r)(Hr).
Then

Hν = Hν
1 ×Hν

2 × . . .×Hν
r = H1 ×H2 × . . .×Hr = H,

and so ν ∈ NSn(H).
≤: Let ν ∈ NSn(H). Then by Lemma 4.2.5, there exists ε ∈ E such that Hν

i = Hε
i

for all 1 ≤ i ≤ r. Since νε−1 fixes each ∆i setwise, we have H
(νε−1)|∆i
i = Hi for all i.

Therefore (νε−1)|∆i ∈ NSym(∆i)(Hi). Hence νε−1 ∈ NSym(∆1)(H1) × NSym(∆2)(H2) ×
. . .×NSym(∆r)(Hr).
It remains to show that NSym(∆1)(H1) × NSym(∆2)(H2) × . . . × NSym(∆r)(Hr) is con-
tained in 〈NSym(∆1)(H1)×NSym(∆2)(H2)× . . .×NSym(∆t)(Hr), E〉. We will show that
NSym(∆j)(Hj) ≤ 〈NSym(∆i)(Hi), Ei〉 for all Hj ∈ [Hi]∼c . Let hi ∈ Hi and let cij ∈ Ei
be as in Definition 4.2.4. Then there exists hj ∈ Hj such that hciji = hj . Let νj ∈
NSym(∆j)(Hj). Then hcijνjciji = h

νjcij
j ∈ Hcij

j = Hi. Therefore cijνjcij ∈ NSym(∆i)(Hi)

and hence νj ∈ 〈NSym(∆i)(Hi), Ei〉.

4.3 Permutation isomorphism of projections

In this section, we first show how the permutation isomorphism classes of certain pro-
jections can be used to give conjugacy invariant functions and refiners for computing
NSn(H). We then define the class InP(A) consisting of groups whose transitive con-
stituents are all permutation isomorphic to A. Lastly in Proposition 4.3.10, we give the

66 Chapter 4: Normalisers of Highly Intransitive Groups

unique smallest subgroup of Sn containing NSn(H) for all H ∈ InP(A) with k orbits.
Note that some results in this section generalise and describe some ideas presented in
[Hul05, Section 11].

4.3.1 Pruning with permutation isomorphism of projections

Recall the definition of permutation isomorphism from Definition 1.1.5. By Proposi-
tion 1.1.7, permutation isomorphism is preserved under conjugation. In this subsection,
we present some conjugacy invariant functions and refiners resulting from permutation
isomorphism classes of certain projections.

We will start by considering the projections of groups on their orbits. Recall that
we identify Sym(Γ) as a subgroup of Sym(∆) for all sets Γ and ∆ such that Γ ⊂ ∆.

Lemma 4.3.1. Let K and L be subgroups of Sn such that L = Kg for some g ∈ Sn.
Let Ω1 and Ω2 be K-orbits. Then K|Ω1 and K|Ω2 are permutation isomorphic if and
only if L|Ωg1 and L|Ωg2 are permutation isomorphic.

Proof. By Proposition 1.1.7, K|Ω1 and K|Ω2 are permutation isomorphic if and only if
there exists σ ∈ Sym(Ω1 ∪ Ω2) such that (K|Ω1)σ = K|Ω2 . Then

(L|Ωg1)g
−1σg = (K|Ω1)gg

−1σg = (K|Ω1)σg = (K|Ω2)g = L|Ωg2 .

Hence by the backward implication of Proposition 1.1.7, L|Ωg1 and L|Ωg2 are permutation
isomorphic. The converse follows similarly.

So we may obtain a conjugacy invariant function and refiner using the permutation
isomorphism classes of the transitive constituents of groups.

Lemma 4.3.2. For K ≤ Sn, let ψK be the function from the set of orbits of K to N
such that ψK(∆) is the number of K-orbits ∆′ such that K|∆ and K|∆′ are permutation
isomorphic.

1. Let Ψ be the function with domain S(Sn) such that Ψ(K) is the multiset

{ψK(∆) | for all orbits ∆ of K}.

Then Ψ is a conjugacy invariant function.

2. Let Φ be the function with domain S(Sn)× Ω such that Ψ(K,α) = ψK(∆) where
∆ is the K-orbit containing α. Then Φ is a conjugacy invariant refiner.

Proof. Let K,L ≤ Sn such that L = Kg for some g ∈ Sn.
Part 1: Let ∆ be aK-orbit. Then ∆g is a L-orbit. We shall show that ψK(∆) = ψL(∆g),
from which the result follows.
Let ∆′ be a K-orbit. Then by Lemma 4.3.1, K|∆ is permutation isomorphic to K|∆′ if
and only if L|∆g is permutation isomorphic to L|∆′g . Thus ψK(∆) = ψL(∆g).

4.3. Permutation isomorphism of projections 67

Part 2: Let α ∈ {1, 2, . . . , n} and let ∆ be the K-orbit containing α. Then ∆g is the
L-orbit containing αg. By the arguments above, ψK(∆) = ψL(∆g) and so Ψ(K,α) =

Ψ(L,αg).

Note that there is no known efficient algorithm to test permutation isomorphisms.
In practice, if the orbits are small, the GAP function TransitiveIdentification is
quick and can be used for permutation isomorphism testing. For a transitive group G,
the image TransitiveIdentification(G) returns an integer i such that G is permuta-
tion isomorphic to the i-th group in the transitive group library with degree |Supp(G)|
[Hul17]. Hence two transitive permutation groups H and G are permutation isomor-
phic if and only if |Supp(H)| = |Supp(G)| and TransitiveIdentification(H) =

TransitiveIdentification(G). However, note that TransitiveIdentification is
based on existing classifications of transitive groups, and so it is limited by the degree
of the input group.

Therefore the following result follows from Lemma 4.3.2.

Corollary 4.3.3. Let Ψ be the function with domain S(Sn) where Ψ(K) is the multiset
of tuples

{(|Γ|,TransitiveIdentification(K|Γ)) | for all orbits Γ of K}.

Then Ψ is a conjugacy invariant function.

For larger orbits, this method is not feasible. Since the order of two permutation
isomorphic groups is the same, we give the following conjugacy invariant function and
refiner. Note that the following result is elementary and it need not be proved via
permutation isomorphisms.

Corollary 4.3.4. For all subgroups K of Sn, let ψK be the function from the set of
orbits of K to N such that ψK(∆) is the number of K-orbits ∆′ such that |∆| = |∆′|
and |(|K|∆)| = |(K|∆′)|. Let Ψ and Φ be as constructed in Lemma 4.3.2. Then Ψ is a
conjugacy invariant function and Φ is a conjugacy invariant refiner.

In this thesis, we will mostly consider groups with pairwise permutation isomorphic
transitive constituents. So the conjugacy invariant functions and refiners above are of
no use to us. We will instead consider certain stabilisers of the projections onto the
unions of pairs of orbits to obtain a conjugacy invariant refiner.

Lemma 4.3.5. Let Ψ be as in Corollary 4.3.3. Let Φ be the function with domain
S(Sn) × Ω such that Φ(K,α) gives the multiset of Ψ-images of pointwise stabilisers
{Ψ((K|Ωi∪Ωj)(Ωj)) | 1 ≤ j ≤ k, j 6= i} if α ∈ Ωi, where Ω1,Ω2, . . . ,Ωk are orbits of K.
Then Φ is a conjugacy invariant refiner.
We will denote Φ by ProjOnOrbitPairsCIR.

68 Chapter 4: Normalisers of Highly Intransitive Groups

Proof. Let K,L ≤ Sn such that L = Kg for some g ∈ Sn. Let Ω1,Ω2, . . . ,Ωk be the
orbits of K. Let α ∈ Ω and let 1 ≤ i ≤ k such that α ∈ Ωi. Let 1 ≤ j ≤ k such
that j 6= i. Then ((K|Ωi∪Ωj)(Ωj))

g = (L|Ωgi∪Ωgj
)(Ωgj), and so by Corollary 4.3.3, we have

Ψ((K|Ωi∪Ωj)(Ωj)) = Ψ((L|Ωgi∪Ωgj
)(Ωgj)).

Therefore the multisets

{Ψ((K|Ωi∪Ωj)(Ωj)) | 1 ≤ j ≤ k, j 6= i} and {Ψ((L|Ωgi∪Ωgj
)(Ωgj)) | 1 ≤ j ≤ k, j 6= i}

are equal. Since Ωg
i is the orbit of L containing αg, the multisets above are Φ(K,α) and

Φ(L,αg) respectively so Φ(K,α) = Φ(L,αg).

Note that we may also consider the projection on the unions of more than two orbits.
However this is not implemented.

4.3.2 Normalisers of H in InP(A)

By Lemma 4.3.1, the normaliser NSn(H) permutes the permutation isomorphic transi-
tive constituents of H. In this subsection we introduce the class InP(A) for transitive
group A ≤ Sm, which consists of all groups whose transitive constituents are all per-
mutation isomorphic to A. We will also give a subgroup of Sn containing NSn(H) for
H ∈ InP(A). Such a subgroup is used for computing normalisers in [Hul05, Section
11]. Here, we will give more details of the construction of such a subgroup.

Definition 4.3.6. Let A ≤ Sm be transitive. Let InP(A) be the class consisting
of all groups H ≤ Sn with k orbits Ω1,Ω2, . . . ,Ωk such that each projection H|Ωi is
permutation isomorphic to A. Notice that n = mk.

An alternative way of seeing the groups in InP(A) is as subdirect products of Ak.
For the rest of the section, we will use the following notation.

Notation 4.3.7. Let H ∈ InP(A) be a subgroup of Sn. For 1 ≤ i ≤ k, let Gi = H|Ωi .
For 2 ≤ i ≤ k, let φi : Ω1 → Ωi be a bijection witnessing the permutation isomorphism
from G1 to Gi. So Gi is permutation isomorphic to A for all i.
Let G = G1 × G2 × . . . × Gk, identified as a subgroup of Sn. Then H is a subdirect
product of G.

Next we define a subgroup L ≤ Sn and analyse its structure in a technical lemma.
We will use this lemma later to show that L contains NSn(H). Recall that for all Γ ⊂ ∆,
we identify Sym(Γ) as a subgroup of Sym(∆) using the natural inclusion.

Lemma 4.3.8. Let H ∈ InP(A) with the notation from Notation 4.3.7, for 1 ≤ i ≤ k,
let Ni := NSym(Ωi)(Gi). For each 2 ≤ i ≤ k, let φi be the involution in Sn with support
Ωi ∪ Ωj such that φi(α) = αφi for all α ∈ Ωi. Let B := 〈N1, N2, . . . , Nk〉 ≤ Sn and let
K := 〈φj | 2 ≤ j ≤ k〉 ≤ Sn. Let L := 〈B,K〉.

4.3. Permutation isomorphism of projections 69

1. Let ξ : K → Sk be the permutation representation of K on {Ω1,Ω2, . . . ,Ωk}. Then
ξ is faithful and K ∼= Sk.

2. L is permutation isomorphic to N1 o Sk in its imprimitive action.

3. NSn(G) = L.

Proof. Part 1: The mapping ξ is a homomorphism since for all κ1, κ2 ∈ K and 1 ≤ i ≤ k,

Ωiξ(κ1)ξ(κ2) = (Ωiξ(κ1))κ2 = (Ωκ1
i)κ2 = Ωκ1κ2

i = Ωiξ(κ1κ2) .

For injectivity, let κ ∈ K such that ξ(κ) = 1. Then Ωκ
i = Ωi, for all 1 ≤ i ≤ k. We first

show that κ fixes Ω1 pointwise. Let α ∈ Ω1. As K is generated by the φi, we can write κ
as a product of the φi. Since for each 2 ≤ i ≤ k, the orbit Ωi is moved only by φi, there
exist (not neccessarily distinct) I1, I2, . . . , Ir such that ακ = αφI1

2
φI2

2
...φIr

s

= αφIr
s

.
Then as ακ ∈ Ω1, the integer s is even. So ακ = α.
Let α ∈ Ωi for i 6= 1. Then there exists β ∈ Ω1 such that αφi = β. Since φi is an
involution, we have ακ = βκφi = βφi = α. So κ also fixes Ωi pointwise. Hence ξ is
injective and is therefore faithful.
The mapping ξ is surjective since ξ(φi) = (1, i) for all 2 ≤ i ≤ k, and {(1, i) | 2 ≤ i ≤ k}
generates Sk. Therefore K ∼= Sk.
Part 2: We first show that the Ωi form a block system for L. Since Ni fixes Ωi setwise
and K permutes the Ωi, it suffices to show that L is transitive. Let α, β ∈ Ω and
let 1 ≤ i, j ≤ k such that α ∈ Ωi and β ∈ Ωj . Then αφi , βφj ∈ Ω1, therefore since
A is assumed to be transitive, there exists some g ∈ G such that αφig = βφj . So
φigφj ∈ 〈G,K〉 ≤ L maps α to β, therefore L is transitive.
Consider the kernel J of the action of L on these blocks. Since K acts faithfully on
the blocks, J ≤ 〈N1, N2, . . . , Nk〉. Conversely, since each Ni fixes the blocks, the group
〈N1, N2, . . . , Nk〉 ≤ J . So J = 〈N1, N2, . . . , Nk〉 ∼= N1 × N2 × . . . × Nk. Hence, up to
isomorphism, L ≤ (N1 × N2 × . . . × Nk) o Sk. But as Sk ∼= K ≤ L, it follows that
L = (N1 ×N2 × . . .×Nk)o Sk ∼= N1 o Sk.
Part 3: We first show that G E L. Since Gi ≤ NSym(Ωi)(Gi) for all 1 ≤ i ≤ k, we
have G ≤ L. To show that G is normal in L, let g ∈ G. Then we can write g as the
product of g1, g2, . . . , gk, where each gi ∈ Gi. Let 1 ≤ i ≤ k and let ni ∈ Ni. Then
there exists g′i ∈ Gi such that g′i = gnii . Since ni|Ωj = 1 for all other j 6= i, we have
gni = g1 . . . gi−1g

′
igi+1 . . . gk ∈ G1 ×G2 × . . .×Gk = G, and so Gni = G.

Let 2 ≤ i ≤ k. We now show that Gφi = G. Since φi is a bijection witnessing the
permutation isomorphism between G1 and Gi, as in the proof of Proposition 1.1.7,
Gφi1 = Gi. So there exists g′1 ∈ G1 and g′i ∈ Gi such that g′i = gφi1 and g′1 = gφii . Since
φi fixes all points outside Ω1 ∪ Ωi, we have that

gφi = gφi1 g
φi
2 . . . gφik = g′1g2 . . . gi−1g

′
igi+1 . . . gk ∈ G1 ×G2 × . . .×Gk = G.

70 Chapter 4: Normalisers of Highly Intransitive Groups

Since the ni and the φi generate L, we have G E L.
Lastly we show that NSn(G) = L. ≥: Since G E L ≤ Sn and NSn(G) is the largest
subgroup of Sn in which G is normal, we have L ≤ NSn(G).
≤: First observe that since L ≤ NSn(G), the normaliser NSn(G) is transitive. Then
as G E NSn(G), by Proposition 1.1.14, the orbits Ω1,Ω2, . . . ,Ωk of G form a system
of blocks of NSn(G). Let g ∈ G, and let ν ∈ NSn(G). Then ν permutes the blocks
Ω1,Ω2, . . . ,Ωk. Since the induced action of K on the Ωi is isomorphic to Sk, there
exists κ ∈ K such that Ων

i = Ωκ
i for all 1 ≤ i ≤ k. Then νκ−1 fixes each Ωi setwise,

and so (νκ−1)|Ωi ∈ Ni for 1 ≤ i ≤ k. Hence νκ−1 ∈ 〈N1, N2, . . . , Nk〉 = B. Therefore
ν ∈ 〈B,K〉 = L.

Let H ∈ InP(A). We will show that L contains NSn(H) in Proposition 4.3.10,
which is the main result of this subsection.

Lemma 4.3.9. Let T1,T2, . . . ,Tk be transitive groups with pairwise disjoint supports.
Let S be the symmetric group on the disjoint union of the supports of the Ti. Let
T := T1×T2× . . .×Tk, identified as a subgroup of S. Let A be a subdirect product of T
and let C be a group such that T ≤ C ≤ S. Then NC(A) ≤ NC(T).

Proof. Let ν ∈ NC(A) and t = (1, . . . , 1, ti, 1, . . . , 1) ∈ T for some 1 ≤ i ≤ k and ti ∈ Ti.
We show that tν ∈ T . Then as

{(1, . . . , 1, ti, 1, . . . , 1) | for all ti ∈ Ti and 1 ≤ i ≤ k}

generate T , we have ν ∈ NC(T).
Since A is a subdirect product of T , the projection of A onto Ti is Ti, so there exists
(a1, a2, . . . , ak) ∈ A such that ai = ti. Since NC(A) permutes the orbits of A, there
exists 1 ≤ j ≤ k such that aνi ∈ Tj . Then

tν = (1, . . . , 1, aνi , 1 . . . , 1) ∈ 1× . . .× 1× Tj × 1× . . .× 1 ≤ T.

Proposition 4.3.10. Let H be as in Notation 4.3.7 and let L be as in Lemma 4.3.8.
Then NSn(H) ≤ L.

Proof. Let G be as in Notation 4.3.7. AsH is a subdirect product of G, by Lemma 4.3.9,
NSn(H) ≤ NSn(G). Then by Part 3 of Lemma 4.3.8, NSn(H) ≤ L.

Lastly, since L ∼= N1 o Sk, it is useful to think of a normalising element g ∈ NSn(H)

as an element of the wreath product.

Lemma 4.3.11. Let H = 〈X〉 be as in Notation 4.3.7. Assume that we have B, K
and ξ as in Lemma 4.3.8. Let g ∈ NSn(H). Then in polynomial time, we can compute
ν ∈ B and κ ∈ K such that g = νκ.

4.4. Algorithm 71

Proof. By Proposition 4.3.10, we have g ∈ L, so g induces a permutation of the orbits
Ω1,Ω2, . . . ,Ωk of H. Let w ∈ Sk such that Ωg

i = Ωiw for 1 ≤ i ≤ k. Let ξ be as
in Lemma 4.3.8. Then ν := gξ−1(w) fixes each H-orbits, so ν ∈ B. By Part 9 of
Theorem 2.1.9, ξ−1(w) ∈ K can be computed in polynomial time.

4.4 Algorithm

Let H ≤ Sn be in class InP(A) for some transitive group A ≤ Sm. Using some
of the conjugacy invariant functions and refiners defined in this chapter, we compute a
subgroup S of Sn containingNSn(H), thenNSn(H) = NS(H). We will demonstrate that
such an S can be useful for reducing the computation time for NSn(H) in Section 4.5.

We start by showing how we can use a conjugacy invariant function to construct a
partition preserved by NSn(H).

Lemma 4.4.1. Let H ∈ InP(A) have orbits Ω1,Ω2, . . . ,Ωk. Let Ψ be a conjugacy
invariant function. Let P be a partition of {Ω1,Ω2, . . . ,Ωk} such that Ωi and Ωj are in
the same cell if and only if Ψ(H(Ωi)) = Ψ(H(Ωj)). Then NSn(H) stabilises the partition
P .

Proof. Let Ωi and Ωj be orbits of H in different cells of P . Then Ψ(H(Ωi)) 6= Ψ(H(Ωj)).
By the definition of a conjugacy invariant function, Ψ(H(Ωi)) and Ψ(H(Ωj)) are not
conjugate in Sn. Then by Lemma 2.4.9 there are no ν ∈ NSn(H) such that Ων

i = Ωj .

Similarly, we can obtain a partition stabilised byNSn(H) using a conjugacy invariant
refiner:

Lemma 4.4.2. Let H ∈ InP(A), with H ≤ Sn. Let Φ be a conjugacy invariant refiner.
Let P be a partition of {1, 2, . . . , n} such that α and β are in the same cell if and only
if Φ(H,α) = Φ(H,β). Then NSn(H) stabilises partition P .

Proof. Let α and β be points in {1, 2, . . . , n} in different cells of P . Then we have
Φ(H,α) 6= Φ(H,β). By the definition of a conjugacy invariant refiner, there are no
ν ∈ Sn such that Hν = H and αν = β.

Let Φ be the conjugacy invariant refiner ProjOnOrbitPairsCIR (Lemma 4.3.5),
EquivOrbsCIR (Part 2 of Lemma 4.1.2) or DdpdCIR (Part 2 of Lemma 4.2.2). We
show that we can in fact obtain a partition of the H-orbits.

Lemma 4.4.3. Let Φ be the conjugacy invariant refiner ProjOnOrbitPairsCIR,
EquivOrbsCIR or DdpdCIR. Let K ≤ Sn. If α and β are in the same K-orbit, then
Φ(K,α) = Φ(K,β).

Proof. If Φ is the conjugacy invariant refiner EquivOrbsCIR or ProjOnOrbit-

PairsCIR, then the results follows from the definition of Φ. Else let Φ be as in
DdpdCIR. If α and β are in the same K-orbit, then they are moved by the same
disjoint direct factor of K. So Φ(K,α) = Φ(K,β).

72 Chapter 4: Normalisers of Highly Intransitive Groups

Corollary 4.4.4. Let H ≤ Sn with orbits Ω1,Ω2, . . . ,Ωk. Let Φ be conjugacy invariant
refiner EquivOrbsCIR, DdpdCIR or ProjOnOrbitPairsCIR. For 1 ≤ i ≤ k, fix
a point αi ∈ Ωi. Let P be a partition of {Ω1,Ω2, . . . ,Ωk} such that Ωi and Ωj are in
the same cell if and only if Φ(H,αi) = Φ(H,αj). Then NSn(H) stabilises partition P .

Now let P be a partition of the H-orbits Ω1,Ω2, . . . ,Ωk stabilised by NSn(H). Let
L ∼= NSym(Ω1)(H|Ω1) o Sk be as in Lemma 4.3.8. We will compute a subgroup of L
stabilising P which contains NSn(H).

Lemma 4.4.5. Let P be a partition of the H-orbits Ω1,Ω2, . . . ,Ωk stabilised by NSn(H).
Let P ′ be the partition of {1, 2, . . . k} such that 1 ≤ i, j ≤ k are in the same cell of P ′ if
and only if Ωi and Ωj are in the same cell of P . Let U ≤ Sk be stabiliser of P ′ in Sk.
Let ξ and B be as in Lemma 4.3.8, and let S = 〈B, ξ−1(U)〉. Then NSn(H) ≤ S.

Proof. Let ν ∈ NSn(H). Then by Proposition 4.3.10, the normaliser NSn(H) is con-
tained in L = 〈B, ξ−1(Sk)〉. SinceNSn(H) permutes theH-orbits, the element ν induces
a permutation σ ∈ Sk on the Ωi, where Ων

i = Ωiσ . Then as NSn(H) stabilises P , the
permutation σ stabilises P ′, therefore σ ∈ U .
Let s := ξ−1(σ) ∈ S. Since s and ν induces the same permutation σ on the H-orbits,
we have νs−1 fixes each Ωi setwise. Then for each 1 ≤ i ≤ k, the projection (νs−1)|Ωi
normalises H|Ωi , so νs−1 ∈ B ≤ S. Therefore ν ∈ S.

Hence, given a group H = 〈X〉 ≤ Sn in class InP(A) for some transitive group
A ≤ Sm, we may compute the normaliser NSn(H) the following way:

1. Fix an labelling of the H-orbits Ω1,Ω2, . . . ,Ωk.

2. Compute L ∼= NSm(A) o Sk as in Lemma 4.3.8.

3. Using Corollary 4.4.4, compute partitions Pg0, Pe0 and Pd0 using the conju-
gacy invariant refiners ProjOnOrbitPairsCIR (Lemma 4.3.5), EquivOrb-

sCIR (Part 2 of Lemma 4.1.2) and DdpdCIR (Part 2 of Lemma 4.2.2) respec-
tively.

4. Using Lemma 4.4.1, compute partitions Pe1 and Pd1 using the conjugacy invariant
functions EquivOrbsCIF (Part 1 of Lemma 4.1.2) and DdpdCIF (Part 1 of
Lemma 4.2.2) respectively.

5. Compute the meet P of the partitions Pe0, Pe1, Pd0, Pd1 and Pg0 .

6. Compute the group S stabilising P as in Lemma 4.4.5, so NSn(H) ≤ S.

7. Compute NS(H).

4.5. Results and discussion 73

4.5 Results and discussion

In this section, we compare the performance of the algorithm in Section 4.4 against the
generic normaliser computation function in GAP.

We consider groups in class InP(A) for all transitive group A of degree between 2
and 10 inclusive. For each such A ≤ Sm, we consider 10 random groups H ≤ Sn in
InP(A) with 8 orbits and 10 random groups H ≤ Sn in InP(A) with 10 orbits. Each of
these H with k ∈ {8, 10} orbits is generated in the following way. Let G ≤ Smk be the
group in InP(A) with orbits Ω1,Ω2, . . . ,Ωk such that G = G|Ω1 × G|Ω1 × . . . × G|Ωk ,
identified as a subgroup of Smk. Choose a random integer s between 1 and k, and
generate a set S of random elements of G of size s. While 〈S〉 is not in InP(A), we add
more random elements of G to S. Lastly we set H = 〈S〉.

For each H ≤ Sn, we compute its normaliser NSn(H) using both the Normalizer

function in GAP and the algorithm in Section 4.4, with a 10 minutes timeout. The
result is presented in Figure 4.1. For each method, we give the median, lower quartile
and upper quartile computation time for each H ∈ InP(A) with k orbits. The results
are ordered independently by increasing median time for GAP and the new algorithm.
For each degree of A, we also report the ratio of the completed instances over the total
number of instances. Finally, we also give the scatter heatplots of the computation of
each NSn(H) using the two algorithms.

Results show that the number of instances exceeding the timeout significantly de-
creases when using the new algorithm. Of the instances where the GAP function is fast
(≤ 10s), the new algorithm may be slower but remains quite fast. For all instances
where GAP requires more than 100s, the new algorithm always performs better. In
particular, there are many instances where GAP exceeds the time limits but the time
taken by the new algorithm remains quite low.

However, we have only experimented on groups with 8 or 10 orbits. It is unclear if
the initial computation of the overgroup of NSn(H) will payoff for groups with a larger
number of orbits. On the other hand, we could use the conjugation invariant functions
and refiners during the search, as described in Section 2.4.2, instead of using them to
compute an overgroup of NSn(H). We also note that there could be more sophisticated
methods for constructing the subdirect products H which are not implemented here.

For future work, it would be interesting to directly compare the effectiveness of these
conjugacy invariant functions and refiners against each other, and against the methods
implemented in GAP, such as those using orbital graphs. It would also be useful to
determine and characterise the properties of the intransitive groups H that give slow
normaliser computation, to obtain better global pruning methods.

74 Chapter 4: Normalisers of Highly Intransitive Groups

10−1

100

101

102

m
ed

ia
n

lo
g

tim
e(

s)

GAP
New

(a) Median, lower and upper quartile log compu-
tation time (logs) for each G for k = 8.

10−1

100

101

102

m
ed

ia
n

lo
g

tim
e(

s)

GAP
New

(b) Median, lower and upper quartile log compu-
tation time (logs) for each G for k = 10.

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10
degree

ra
tio

 o
f c

as
es

 c
om

pl
et

ed New
GAP

(c) Ratio of completed cases for each degree for
k = 8.

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10
degree

ra
tio

 o
f c

as
es

 c
om

pl
et

ed New
GAP

(d) Ratio of completed cases for each degree for
k = 10.

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

new time (s)

G
A

P
 ti

m
e

(s
)

1
10
100

count

(e) Scatter heatplot of all instances for k = 8.

10−1

100

101

102

103

10−1 100 101 102 103

new time (s)

G
A

P
 ti

m
e

(s
)

1
10
100

count

(f) Scatter heatplot of all instances for k = 10.

Figure 4.1: Computation time for computing normalisers of 10 random groups with k
orbits in class InP(G), for each transitive group G of degree between 2 and 10, with 10
minutes timeout.

Chapter 5

Normalisers of Groups In Class
InP(Cp)

In this chapter we will compute NSn(H) for H ∈ InP(Cp), where Cp is the cyclic group
on p points. We believe the class InP(Cp) is likely to be one of the hardest cases of the
Norm-Sym problem, as current methods are very slow. Indeed, the implementation in
the computer algebra system GAP [GAP20] struggles to solve the Norm-Sym problem
for groups in InP(Cp) even when H has a small degree (median time of more than 10
minutes for degree less than 30 and p = 2, see Section 5.6).

In terms of complexity, the decision variant of Norm-Sym, that is, deciding whether
two groups H,K ∈ InP(Cp) are conjugate in Sn, is polynomially equivalent to deciding
whether two codes over Fp are monomially equivalent (see Definition 5.1.12, Theo-
rem 5.1.15). This is known to be at least as hard as graph isomorphism [PR97]. By
[SS13, Theorem 1], the monomial equivalence of codes of length k over Fp reduces to
computing the permutation equivalence of codes of length (p− 1)k over Fp. By Babai’s
simply exponential bound on the permutation equivalence of codes [BCGQ11], deciding
the monomial equivalence of codes of length k over Fp is bounded by 2O((p−1)k), as-
suming constant time field operations. However, it is not known whether the conjugacy
problem in symmetric groups is polynomial-time equivalent to Norm-Sym [Luk93].
This chapter will focus on developing an effective practical algorithm to solve Norm-

Sym for groups in InP(Cp).

In this chapter, using methods for computing automorphisms of linear codes, we
give a new faster algorithm to solve the Norm-Sym problem for H ∈ InP(Cp). In
Section 5.6, we provide evidence that our new algorithm performs far better than the
one currently implemented in GAP. As the simply exponential algorithm in [Wie19]
is not implemented, the fastest implemented algorithm to compute NSn(H) is a back-
track search algorithm, and so has a runtime of 2O(n logn). Using methods based on
[Feu09], we shall bound the complexity of the Norm-Sym problem for H ∈ InP(Cp)

by 2O((n/p) log (n/p)). This gives a better complexity for the case when p is large, but
we will show our algorithm is better in practice for all values of p. Using dual codes

75

76 Chapter 5: Normalisers of Groups In Class InP(Cp)

(see Definition 5.2.1), we may bound the depth of the search tree in Sn by n/(2p), so
we get the following result, which will follow immediately from Proposition 5.2.3 and
Theorem 5.2.22.

Theorem 5.0.1. The Norm-Sym problem for H in class InP(Cp) can be solved in
time min

(
2
O(n

p
log n

p
)
, 2
O(n

2p
logn)

)
.

The chapter structure is as follows. In Section 5.1, we show that the Norm-Sym

problem for H ∈ InP(Cp) is polynomially equivalent to the problem of computing
a certain group of automorphisms of a code over Fp. In Section 5.2, we shall prove
Theorem 5.0.1. In Section 5.3, we present several pruning techniques for computing
NSn(H) for H ∈ InP(Cp). We will describe our algorithm to compute NSn(H) for
H ∈ InP(Cp) in Section 5.4. In Section 5.5, we shall see how the method can be
extended to compute the normaliser NSn(H) for H ∈ InP(D2p), the class of groups
with intransitive projections permutation isomorphic to dihedral groups of order 2p,
where p is an odd prime. Finally, in Section 5.6, we will give the runtimes of our
implementations and the one in GAP.

5.1 Normaliser of H ∈ InP(Cp) and code automorphisms

Let p be prime. We will be computing NSn(H) for H in class InP(Cp). First we show
that we can decide if a given group H ≤ Sn is in the class InP(Cp).

Lemma 5.1.1. Let H = 〈X〉 ≤ Sn. Then in polynomial time, we can decide if H ∈
InP(Cp).

Proof. Let Ω1,Ω2, . . . ,Ωk be the orbits of H. Then H ∈ InP(Cp) if and only if |Ωi| = p

and H|Ωi has order p for all 1 ≤ i ≤ k. Hence the result follows from Part 1 of
Theorem 2.1.9.

For the rest of this section, we shall assume the following.

Definition 5.1.2. Let n = pk and let H ≤ Sn be in class InP(Cp). Let Ω1,Ω2, . . . ,Ωk

be the orbits of H, where the orbits are ordered such that |H| = ps = |(H|∪i≤sΩi)|.
For 1 ≤ i ≤ k, let Gi := H|Ωi . Let G := G1×G2× . . .×Gk ≤ Sn, called the enveloping
group of H.
Let g1 be a permutation in Sym(Ω1) generating G1, so G1 = 〈g1〉. For 1 ≤ i ≤ k, let
φi : Ω1 → Ωi be a bijection witnessing the permutation isomorphism betweenG1 andGi,
as in Definition 1.1.5, and let gi = gφi1 , where φi is an involution as in Notation 2.1.11.

Finally note that the permutations gi and the maps φi can be computed in polyno-
mial time.

Lemma 5.1.3. Let H = 〈X〉 ∈ InP(Cp) with k orbits. Then in polynomial time,
we can compute a generating set {g1, g2, . . . , gk} of the enveloping group G of H and

5.1. Normaliser of H ∈ InP(Cp) and code automorphisms 77

bijections φi for 2 ≤ i ≤ k witnessing the permutation isomorphism between 〈g1〉 and
〈gi〉.

Proof. For H-orbit Ωi, we have H|Ωi = 〈(x|Ωi) | x ∈ X〉, which can be computed in
polynomial time. As H|Ωi is cyclic, any non-trivial element of H|Ωi generates H|Ωi .
It is elementary that the conjugacy of two permutations in the symmetric group can
be computed in polynomial time, so the bijections φi can be computed in polynomial
time.

Since we will mostly work with H as a linear code rather than as a permutation
group, in Section 5.1.1, we set up an isomorphism γ from H to a linear code. Then
in Section 5.1.2, we show that computing NSn(H) for H ∈ InP(Cp) is polynomially
equivalent to computing the monomial automorphism group of γ(H).

5.1.1 Representing H as a linear code

In this subsection, we will set up an isomorphism γ between H and a subspace of Fkp.

Definition 5.1.4. Let G be the enveloping group of H, with generators g1, g2, . . . gk,
as in Definition 5.1.2. For g ∈ G, there exist integers r1,r2, . . . ,rk, where 0 ≤ ri ≤ p−1,
such that g = gr11 g

r2
2 . . . grkk . Let γ be the isomorphism from G to (F+

p)k defined by

γ(gr11 g
r2
2 . . . grkk) = (r1,r2, . . . ,rk).

Next we give some matrix notation which we will use throughout the chapter.

Notation 5.1.5. Denote the set of all s× k matrices over the field Fp by M(s, k,Fp).
For M ∈M(s, k,Fp), we denote by Mi,∗ and M∗,j the i-th row and the j-th column of
M respectively.
For a tuple I of distinct elements of {1, 2, . . . , s}, we denote by MI,∗ the matrix of
dimension |I| × k such that the i-th row of MI,∗ is MIi,∗. Similarly for tuple J of
distinct elements of {1, 2, . . . , k}, we denote by M∗,J the matrix of dimension s × |J |
such that the j-th column of M∗,J is M∗,Jj .
We denote the row space of M by 〈M〉.

A subspace of Fp can also be regarded as a linear code.

Definition 5.1.6. A linear code C of length k and rank s over Fp is a subspace of
Fkp with dimension s, which we denote by C ≤ Fkp. A generator matrix M of C is
a matrix in M(k, s,Fp) such that the rows form a basis for C. A generator matrix
M ∈M(k, s,Fp) of C is in standard form if its first s columns form the identity matrix
Is of size s.

Remark 5.1.7. We shall assume that all linear codes are given by generator matrices.
Since we can row reduce a matrix in polynomial time [BF73] and the row space of

78 Chapter 5: Normalisers of Groups In Class InP(Cp)

a matrix remains the same after row-reductions, we may assume that any generator
matrix is row-reduced. Since the rank of a matrix M with k columns is at most k, we
shall also assume that a given generator matrix of a code has at most k rows. For more
information on linear codes, refer to, for example, [vL99].

Note that γ(H) is a subspace of γ(G) = Fkp, so γ(H) is linear code of length k over
Fp.

5.1.2 The normaliser of H as an automorphism group of a linear code

The main result of this subsection is Theorem 5.1.15, where we show that computing
NSn(H) for H ∈ InP(Cp) is polynomially equivalent to computing a certain group of
automorphisms of a code over Fp.

Denote by F∗p the multiplicative group of Fp. We start by specialising Lemma 4.3.8
to H in InP(Cp).

Proposition 5.1.8. Let H and gi be as in Definition 5.1.2. Let L, K, B and the Ni

be as in Lemma 4.3.8. Let r ∈ F∗p be primitive. For 1 ≤ i ≤ k, let ci ∈ Sym(Ωi) such
that c−1

i gici = gri . Then B = 〈g1, g2, . . . gk, c1, c2, . . . , ck〉 and so

NSn(H) ≤ L = 〈B,K〉

= 〈g1, g2, . . . gk, c1, c2, . . . , ck,K〉
∼= (Cp o Cp−1) o Sk.

Proof. We will show that Ni = 〈gi, ci〉 and then the result follows from Proposi-
tion 4.3.10.
≥: Since Gi ≤ NSym(Ωi)(Gi), we have gi ∈ NSym(Ωi)(Gi). By the definition of ci, we
have gcii ∈ Gi ≤ NSym(Ωi)(Gi), and so ci ∈ NSym(Ωi)(Gi).
≤: Let ν ∈ NSym(Ωi)(Gi) and let gi ∈ Gi. Observe first that since the elements in
Aut(Gi) are fully defined by the image of gi, and there are p− 1 choices for this image,
|Aut(Gi)| ≤ p − 1. Now since ci induces an automorphism α of Gi of order p − 1, we
have Aut(Gi) ∼= 〈ci〉 ∼= Cp−1. Then there exists d ∈ 〈ci〉 such that gdi = gνi . Since
CSym(Ωi)(Gi) = Gi, we have ν ∈ 〈gi, ci〉.

Next, we define the actions of certain subgroups of GLk(p) on γ(H), and set up
more notation we will be using later.

Definition 5.1.9. Let D and P be subgroups of GLk(p) consisting of all invertible
diagonal matrices and permutation matrices of GLk(p) respectively. Let W := DP .
The groups D, P and W act on the vector space Fkp by right multiplication, and the
action of W is called the monomial action.

Observe that D ∼= (F∗p)
k, P ∼= Sk and W = D o P ∼= F∗p o Sk.

5.1. Normaliser of H ∈ InP(Cp) and code automorphisms 79

Definition 5.1.10. We denote by diag(t1, t2, . . . , tk) the element of D with diago-
nal entries t1, t2, . . . , tk ∈ F∗p. So for M ∈ M(s, k,Fp) and 1 ≤ j ≤ k, we have
(Mdiag(t1, t2, . . . , tk))∗,j = M∗,jtj .
Let K ∼= Sk be as in Lemma 4.3.8. Define a homomorphism ρ : K → P by ρ(κ)i,j = 1 if
and only if Ωj = Ωκ

i . So forM ∈M(s, k,Fp) and 1 ≤ i ≤ k, we have (Mρ(κ))∗,j = M∗,i

where Ωj = Ωκ
i .

So the right multiplication of M by an element of W first multiplies each column of
M by some non-zero scalar and then permutes the columns of M . We may decompose
w ∈W as follows.

Lemma 5.1.11. Let w ∈ W . Then in polynomial time, we can find d ∈ D and g ∈ P
such that w = dg.

Proof. For 1 ≤ i ≤ k, let ti be the non-zero entry of wi,∗. Let d = diag(t1, t2, . . . , tk) ∈
D. Observe that g := d−1w ∈ P , so w = dg.

Definition 5.1.12. Let C be a code of length k over Fp. A monomial automorphism of
C is an element of W that setwise stabilises C. The monomial automorphism group of
C is the group of all monomial automorphisms of C, denoted by MAut(C). Two codes
C,C ′ ≤ Fkp are monomially equivalent if there exists w ∈W such that Cw = C ′.

Recall the isomorphism γ from Definition 5.1.4. We will show that computing
NSn(H) is polynomially equivalent to computing the monomial automorphism group of
γ(H).

Let L = B o K be as in Proposition 5.1.8. We shall show that the conjugation
action of L/G ∼= Cp−1 o Sk on G is equivalent to the action of W ∼= Cp−1 o Sk on Fkp.
Recall that for all subsets ∆ of Ω, we embed Sym(∆) into Sym(Ω) by fixing all points
in Ω\∆.

Lemma 5.1.13. Let L = B oK ≤ Sn be as in Proposition 5.1.8. Let σ : B → D map
ν 7→ diag(t1, t2, . . . , tk), where ν−1giν = gtii for 1 ≤ i ≤ k. Define a map Ξ : L→W by
writing each l ∈ L as νκ for some ν ∈ B and κ ∈ K and mapping

l = νκ 7→ σ(ν)ρ(κ).

Then the following statements hold.

1. Ξ is an epimorphism.

2. For all g ∈ G and for all l ∈ L, we have γ(gl) = γ(g)Ξ(l).

3. Ker(Ξ) = G.

4. Ξ(NSn(H)) = MAut(γ(H)), and so NSn(H) is the full pre-image of MAut(γ(H))

under Ξ.

80 Chapter 5: Normalisers of Groups In Class InP(Cp)

Proof. Part 1: To show that Ξ is a homomorphism, let l1 = ν1κ1 and l2 = ν2κ2 be
elements of L, where ν1, ν2 ∈ B and κ1, κ2 ∈ K. Then

Ξ(l1l2) = Ξ(ν1ν
κ−1

1
2 κ1κ2) = σ(ν1ν

κ−1
1

2)ρ(κ1κ2) = σ(ν1)σ(ν
κ−1

1
2)ρ(κ1)ρ(κ2).

For 1 ≤ j ≤ k, let 1 ≤ r ≤ k be such that Ωκ1
j = Ωr, and let tr ∈ F∗p be such that

σ(ν2)r = tr. Then using the actions noted in Definition 5.1.10,

(Mρ(κ1)σ(ν2)ρ(κ1)−1)∗,j = (Mρ(κ1)σ(ν2))∗,r = (Mρ(κ1))∗,rtr = M∗,jtr.

Since gκ1ν2κ
−1
1

j = g
ν2κ
−1
1

r = g
trκ
−1
1

r = g
trκ
−1
1

j , we have

(Mσ(ν
κ−1

1
2))∗,j = M∗,jσ(ν

κ−1
1

2))j = M∗,jtr = (Mρ(κ1)σ(ν2)ρ(κ1)−1)∗,j .

So σ(ν
κ−1

1
2) = σ(ν2)ρ(κ1)−1 . Therefore Ξ(l1l2) = σ(ν1)ρ(κ1)σ(ν2)ρ(κ2) = Ξ(l1)Ξ(l2) and

hence Ξ is a homomorphism. Since σ is an epimorphism, Ξ is also an epimorphism.
Part 2: Let g ∈ G and let l = νκ with ν ∈ B and κ ∈ K. Then there exist ri ∈ Fp and
ti ∈ F∗p such that g|Ωi = grii and gνi = gtii . Let Ωκ

i = Ωj . Then (gl)|Ωj = ((gν)|Ωi)κ =

(gritii)κ. Let the maps φi : Ω1 → Ωi be as in Definition 5.1.2, and let φi be as in
Notation 2.1.11. Since K is generated by the φi and the conjugation by φi swaps g1

and gi, we have gκi = gj . So (gνκ)|Ωj = gritij , and γ(gl)j = riti.
On the other hand,

(γ(g)Ξ(l))j = (γ(g)σ(ν)ρ(κ))j = (γ(g)σ(ν))i = riti = γ(gl)j .

Part 3: ≤: Let l = νκ ∈ L such that Ξ(l) is the k-dimensional identity matrix Ik, where
ν ∈ B and κ ∈ K. Then ρ(κ) = σ(ν)−1Ξ(l) = σ(ν)−1 ∈ D ∩ P = 1. So κ = 1 and
hence l = ν ∈ B. For h ∈ H, we have γ(hl) = γ(h)Ξ(l) = γ(h), and so hl = h. Hence
l ∈ CSn(H). Now since l ∈ B fixes the H-orbits and CSn(H) ≤ Cp o Sk, it follows that
l ∈ G.
≥: Let g ∈ G ≤ B. Since G is abelian, g−1gig = gi for all 1 ≤ i ≤ k. So σ(g) = Ik.
Part 4: Let h ∈ H and let l ∈ NSn(H). Then by Part 2, γ(h)Ξ(l) = γ(hl) ∈ γ(H) and
so Ξ(l) ∈ MAut(γ(H)). Conversely for α ∈ MAut(γ(H)), since Ξ is surjective, there
exists l ∈ L such that Ξ(l) = α. By Part 2, γ(hl) = γ(h)α ∈ γ(H) for all h ∈ H. So
hl ∈ H and hence l ∈ NSn(H). Therefore Ξ(NSn(H)) = MAut(γ(H)).

Lastly we show that the Norm-Sym problem for H ∈ InP(Cp) is polynomial time
equivalent to the MAut problem, which we shall define now.

Problem 5.1.14 (MAut). Let M be a generator matrix for a code C. Compute a
generating set of MAut(C).

Recall from Remark 5.1.7 that each code of length k is given by a generator matrix
with at most k rows. So the input size for MAut is polynomial in n/p, where we do not

5.2. Complexity results 81

count the log p representations of each entry of the matrix.

Theorem 5.1.15. Fix a prime p. Then the Norm-Sym problem for H = 〈X〉 ∈
InP(Cp) with H ≤ Sn is polynomially equivalent to the MAut problem for C ≤ Fn/pp .

Proof. To show the forward reduction, let G be the enveloping group of H. Then by
Lemma 5.1.3, we can compute G and the maps φi in polynomial time. Hence we can
compute the map γ : G → Fkp as in Definition 5.1.4. Then we can obtain a generator
matrix M of γ(H) in polynomial time by finding a basis for 〈γ(x) | x ∈ X〉. Assume
that we can compute a generating set Y for MAut(γ(H)). Since MAut(γ(H)) ≤ W

and W has a permutation representation in Spk, by Theorem 2.1.1, we assume that
|Y | ≤ pk = n. Then by Lemma 5.1.13, NSn(H) = 〈{Ξ−1(α) | α ∈ Y }, G〉, where each
Ξ−1(α) denotes an element l of L such that Ξ(l) = α. By Part 9 of Theorem 2.1.9,
Ξ−1(α) can be computed in polynomial time.
For the backward reduction, let C ≤ Fn/pp be a linear code given by a generator matrix
M ∈ M(s, k,Fp). Let gi = (p(i − 1) + 1, . . . , pi) ∈ Sn for 1 ≤ i ≤ n/p and let
G = 〈g1, g2, . . . , gk〉. Let γ be as in Definition 5.1.4 and let H = 〈γ−1(Mi,∗) | 1 ≤ i ≤ s〉.
Assume that we have a generating set Y for NSn(H). By Theorem 2.1.1, further assume
that the set has size polynomial in n. Then by Lemma 5.1.13, MAut(C) = Ξ(NSn(H)) =

〈Ξ(g) | g ∈ Y 〉, which can be computed in polynomial time by Part 8 of Theorem 2.1.9.

5.2 Complexity results

Let L = B o K be as in Proposition 5.1.8. In Section 5.2.1, we show that for
H ∈ InP(Cp), the normaliser NSn(H) can be computed in time 2

O(n
2p

logn). Then
in Section 5.2.2, we give an efficient algorithm for computing the finest disjoint direct
product decomposition of a given group in class InP(Cp), which underpins the proce-
dures in the later subsections. In Section 5.2.3, we show that for each non-trivial κ ∈ K,
if there exists ν ∈ B such that νκ ∈ NSn(H), then we can find a witness ν in polynomial
time. In Section 5.2.4, we first show that NB(H) can be computed in polynomial time,
then we see how the results in this section come together to reduce the search space
by searching for normalising elements in K ∼= Sk instead of L ∼= (Cp o Cp−1) o Sk, and
hence prove Theorem 5.0.1.

5.2.1 Limiting the depth of the search tree

In this subsection, we show how we can reduce the depth of the search tree using a
possibly smaller group H⊥, which we shall define next.

Definition 5.2.1. The dual code C⊥ of a code C over Fp is the subset {x ∈ Fkp | x ·c =

0 for all c ∈ C}, where ‘·’ denotes the standard dot product. Let H⊥ := γ−1(γ(H)⊥) ≤
Sn.

82 Chapter 5: Normalisers of Groups In Class InP(Cp)

So for c ∈ Fkp, we have γ−1(c) ∈ H⊥ if and only if γ(h) · c = 0 for all h ∈ H.
We shall show that there exists a bijection between NSn(H) and NSn(H⊥). Recall

from Proposition 5.1.8 that NSn(H) ≤ L.

Lemma 5.2.2. Let l = νκ ∈ L, with ν ∈ B and κ ∈ K. Then l ∈ NSn(H) if and only
if ν−1κ ∈ NSn(H⊥).

Proof. Let epimorphism Ξ : L→W be as in Lemma 5.1.13.
⇒: Assume that l ∈ NSn(H). Let d ∈ H⊥. Let σ(ν) = diag(t1,t2, . . . ,tk) ∈ D and
γ(d) = (s1,s2, . . . ,sk) ∈ Fkp. We show that dν−1κ ∈ H⊥ by showing that γ(h)·γ(dν

−1κ) =

0 for all h ∈ H.
Let h ∈ H. Since l ∈ NSn(H), there exists g ∈ H such that gl = h. Let γ(g) =

(r1,r2, . . . ,rk) ∈ Fkp. By the definition of H⊥, we have γ(g) · γ(d) =
k∑
i=1

risi = 0. Then

0 =

k∑
i=1

risi =

k∑
i=1

ritisit
−1
i = (γ(g)σ(ν)) · (γ(d)σ(ν−1)).

Since P permutes the coordinates of Fkp,

γ(g)Ξ(l) · γ(d)Ξ(ν−1κ) = γ(g)σ(ν)ρ(κ) · γ(d)σ(ν−1)ρ(κ) = 0.

Then by Part 2 of Lemma 5.1.13,

γ(h) · γ(dν
−1κ) = γ(gl) · γ(dν

−1κ) = (γ(g)Ξ(l)) · (γ(d)Ξ(ν−1κ)) = 0.

⇐: Since (H⊥)⊥ = H, by the forward implication, νκ = (ν−1)−1κ ∈ NSn(H).

Now, we show that NSn(H) for H ∈ InP(Cp) can be computed in time 2O(n/2p logn).

Proposition 5.2.3. Let H = 〈X〉 ≤ Sn such that H ∈ InP(Cp) with enveloping group
G. Let γ : G→ Fkp be as in Definition 5.1.4 and let m := min{dim γ(H), k−dim γ(H)}.
Then NSn(H) can be computed in time 2O(m logn). Hence NSn(H) can be computed in
time 2

O(n
2p

logn).

Proof. By Lemma 5.1.1, we can check that H ∈ InP(Cp) in polynomial time. Let
s := dim γ(H). We shall show that NSn(H) can be computed in time O(ns), then
by Lemmas 4.3.11 and 5.2.2, NSn(H) can be computed in time O(nm), hence proving
the first assertion. From here, since dim(γ(H)⊥) + dim(γ(H)) = k, the minimum
min{dim γ(H), k − dim γ(H)} is at most k/2, the last assertion follows.
Row reduction can be done in polynomial time [BF73], so we can obtain a row-reduced
generator matrix M of γ(H) in polynomial time. Then we may reorder the orbits of H
such that the matrix M is in standard form.
If w ∈ MAut(γ(H)) thenM ′ := Mw = Mdiag(v1, v2, . . . , vk)ρ(κ) satisfies 〈M〉 = 〈M ′〉.
Since M is in standard form, the elements of 〈M〉 are uniquely determined by their

5.2. Complexity results 83

first s coordinates. So to test whether w ∈ MAut(γ(H)), it suffices to describe which
columns of M are mapped onto the first s coordinates of M ′ and with which scalars,
then the rest of the action of w is uniquely determined up to orbit equivalence. We find
all such w ∈ MAut(γ(H)) by considering all choices of (1κ

−1
, 2κ

−1
, . . . , sκ

−1
) = J and

(vi)i∈J ∈ (F∗p)
s.

For each such J and (vi)i∈J , we first defineM ′ in the following way. We takeM ′ to be the
matrix in M(s, k,Fp) such that, for 1 ≤ i ≤ s, its i-column M ′∗,i is viκ−1M∗,iκ−1 . Then
each row of M ′ can be extended to a row of length k using the fact that 〈M ′〉 ≤ 〈M〉.
Observe that if w ∈ MAut(γ(H)) then (Mw)∗,j , the j-column of the product Mw, is a
scalar multiple of an M -column. Therefore we test whether the choice of J and (vi)i∈J

yields an element of MAut(γ(H)) by testing, for all remaining columns M ′∗,j of M ′

where j > s, if there exists a remaining column M∗,jκ−1 of M and a scalar v
jκ−1 ∈ F∗p

such that M ′∗,j = v
jκ−1M∗,jκ−1 .

If for some j there are no such M∗,jκ−1 and v
jκ−1 , then by our observation on (Mw)∗,j ,

the choice of J and (vi)i∈J do not extend to an element of MAut(γ(H)), and we move
on to the next choice of J and (vi)i∈J . If for some j, there are more than one possible
jκ
−1 , we choose either. If we have succeeded in finding such M∗,jκ−1 and v

jκ−1 for all
j > s, then

(Mdiag(v
1κ−1 , . . . , vkκ−1)ρ(κ))∗,j = v

jκ−1M∗,jκ−1 = M ′∗,j for all 1 ≤ j ≤ k,

and so by letting w = diag(v
1κ−1 , . . . , vkκ−1)ρ(κ), we have Mw = M ′ and so w ∈

MAut(γ(H)). This step can be done in polynomial time by considering all k(p−1) ≤ n
choices of v

jκ−1M∗,jκ−1 for each j > s.

Let Y be the set of all elements w of MAut(γ(H)) found as above. Since there are
(p − 1)sks ≤ ns choices for J and (vi)i∈J , and the procedure described above can be
done in polynomial time, Y can be computed in O(ns). We show that NSn(H) =

〈CSn(H), {Ξ−1(y) | y ∈ Y }〉, where Ξ−1(y) is an element of L with Ξ-image y.
It is clear that NSn(H) contains 〈CSn(H), {Ξ−1(y) | y ∈ Y }〉. For the forward con-
tainment, let ν ∈ NSn(H). Then there exists y ∈ Y such that MΞ(ν) = My and
hence MΞ(ν)y−1 = M . Then by Part 2 of Lemma 5.1.13, νΞ−1(y−1) centralises
H. By Part 3 of Lemma 5.1.13, νΞ−1(y−1) ∈ 〈G,CSn(H)〉 = CSn(H). Therefore
NSn(H) = 〈CSn(H), {Ξ−1(y) | y ∈ Y }〉.
By Theorem 2.1.16 and Part 9 of Theorem 2.1.9, NSn(H) can be computed in O(ns)

time.

While searching for elements of MAut(γ(H)) in W ∼= F∗p oSk, the above result limits
the depth of the search tree. In practice, we search for MAut(γ(H)) in P ∼= Sk, as we
shall see in Section 5.2.4.

84 Chapter 5: Normalisers of Groups In Class InP(Cp)

5.2.2 Disjoint direct product decomposition

Recall the definition of disjoint direct product decomposition from Definition 3.0.1. We
showed in Theorem 3.3.4 that the finest disjoint direct product of a given permutation
group can be computed in polynomial time. Recall γ from Definition 5.1.4. Then
H = R1 × R2 × . . . × Rr is a disjoint direct product decomposition if and only if
γ(H) = γ(R1) + γ(R2) + . . .+ γ(Rr) and the γ(Ri) have pairwise disjoint supports. In
this subsection, we will show that the disjoint direct decomposition of a group in class
InP(Cp) can be computed more efficiently, and calculate its complexity in more detail.
We will also introduce some data structures to be used in the later sections.

Notation 5.2.4. Denote the tuple (1, 2, . . . , i) by i.

For the rest of this subsection, we assume the following.

Notation 5.2.5. LetM ∈M(s, k,Fp) be a generator matrix of γ(H) in standard form.
For 1 ≤ i ≤ s, let xi := γ−1(Mi,∗), so that we may replace the original generating set of
H by X = {x1, x2, . . . , xs}.

First, we see how we may detect certain disjoint direct factors of H from M . For a
tuple J of distinct elements of {1, 2 . . . , k}, let ΩJ = ∪j∈JΩj .

Lemma 5.2.6. Let I = {1 ≤ i ≤ s | Mi,J 6= 0}. Then there exist R1, R2 such that
H = R1 × R2 and Supp(R1) = ΩJ and Supp(R2) = Ω\ΩJ if and only if MI,k\J is a
zero matrix.

Proof. ⇐: Let R1 = 〈xi | i ∈ I〉 and R2 = 〈xi | i 6∈ I〉. Since the xi generate H and H
is abelian, we have H = R1 × R2. Then as MI,k\J = 0, the support Supp(R1) ⊆ ΩJ .
By the definition of I, we have Ms\I,J = 0, and so Supp(R2) ⊆ Ω\ΩJ . Therefore R1

and R2 have disjoint supports and hence H = R1 × R2 is a disjoint direct product
decomposition.
⇒: Let i ∈ I. As H = R1 × R2, there exist r1 ∈ R1 and r2 ∈ R2 such that xi = r1r2.
Note that r1 is non-trivial by the definition of I. We will show that Mi,k\J = 0 by
showing that Mi,∗ = γ(r1). As M is in standard form, each element of 〈M〉 is fully
determined by its restriction to the first s positions, so it suffices to show that Mi,s =

γ(r1)s.
Since r2 fixes all points in ΩJ , we have that xi|ΩJ = r1|ΩJ . Similarly, xi|Ω\ΩJ = r2|Ω\ΩJ .
So

Mi,J = γ(r1)J and Mi,k\J = γ(r2)k\J . (5.1)

In particular, we have Mi,s∩J = γ(r1)s∩J . Hence to show that Mi,s = γ(r1)s, it remains
to show that Mi,s\J = γ(r1)s\J .
Since M is in standard form, there exists a unique 1 ≤ t ≤ s such that Mi,t 6= 0

and Mi,s\t = 0. Suppose first that t 6∈ J . We will show that Mi,∗ = γ(r2), which
contradicts the definition of I as γ(r2)J = 0. Since s ∩ J ⊆ s\t, we have Mi,s∩J = 0.

5.2. Complexity results 85

Then since r2 fixes ΩJ pointwise, Mi,s∩J = 0 = γ(r2)s∩J . By Equation (5.1), we have
Mi,s\J = γ(r2)s\J , and so Mi,s = γ(r2)s. Since each element of 〈M〉 is fully determined
by its restriction to the first s positions, Mi,∗ = γ(r2), a contradiction.
Therefore t ∈ J , so s\J ⊆ s\t and hence Mi,s\J = 0. Since r1 fixes all points outside
ΩJ , it follows that γ(r1)s\J = 0 = Mi,s\J . So Mi,s = γ(r1)s and hence Mi,k\J = 0.

Recall the new generating set X of H from Notation 5.2.5. We shall show in
Lemma 5.2.8 that the finest disjoint direct product of H can be obtained by computing
a certain partition of X.

Definition 5.2.7. Let a ∈ N and let v ∈ Fap. Then the support of v is Supp(v) := {1 ≤
i ≤ a | vi 6= 0}. Let V be a subspace of Fap, then its support Supp(V) = ∪v∈V Supp(v).

Lemma 5.2.8. Let P = 〈C1 | C2 | . . . | Cr〉 be the finest partition of {x1, x2, . . . , xs}
such that for all distinct Ca and Cb, we have

for all x ∈ Ca and y ∈ Cb, Supp(x) ∩ Supp(y) = ∅. (5.2)

For each cell Ci of P, let Ri = 〈x ∈ Ci〉. Then H = R1 × R2 × . . . × Rr is the finest
disjoint direct product decomposition of H.

Proof. Since H is abelian and {x1, x2, . . . , xs} generates H, we have H = R1×R2×. . .×
Rr. Since each pair of cells in P satisfies Equation (5.2), the groups Ri have pairwise
disjoint supports. So H = R1×R2× . . .×Rr is a disjoint direct product decomposition.
It remains to show that it is the finest disjoint direct product decomposition.
Let 1 ≤ i ≤ r. Suppose that Ri = Ri1 × Ri2 is a disjoint direct product decompo-
sition of Ri. Let J1 := Supp(γ(Ri1)) and let I1 := {1 ≤ i ≤ s | Mi,J1 6= 0}. Then
by Lemma 5.2.6, MI1,k\J1

is a zero matrix. So XI1 := {xt | t ∈ I1} has support
Supp(Ri1). Similarly, there exists a subset XI2 ⊆ Ci with support Supp(Ri2). So
Supp(x) ∩ Supp(y) = ∅ for all x ∈ XI1 and y ∈ XI2, which contradicts the assumption
that P is the finest partition which satisfies Equation (5.2).

We shall compute the finest disjoint direct product decomposition ofH by computing
the finest partition P of {x1, x2, . . . , xs} as in Lemma 5.2.8. We will do so by iteratively
computing certain partitions Pj of {x1, x2, . . . , xs}, for 1 ≤ j ≤ k, which we will now
define.

Notation 5.2.9. For 1 ≤ j ≤ k, let ∆j = ∪ji=1Ωi and let Pj be the finest partition of
{x1, x2, . . . , xs} such that for all distinct cells Ca and Cb of Pj , we have

for all x ∈ Ca and y ∈ Cb, Supp(x|∆j) ∩ Supp(y|∆j) = ∅. (5.3)

Remark 5.2.10. We note the following.

1. Since Supp(x|∆j−1)∩ Supp(y|∆j−1) ⊆ Supp(x|∆j)∩ Supp(y|∆j), each cell of Pj is
a union of cells of Pj−1.

86 Chapter 5: Normalisers of Groups In Class InP(Cp)

2. Recall that we assume that M is in standard form. So for j ≤ s, the partition Pj
is the trivial partition consisting of all singletons.

3. If j = k, then ∆j = Ω, so Pk is the partition P from Lemma 5.2.8.

Next, we show how we can compute the Pj for s < j ≤ k.

Lemma 5.2.11. Let s ≤ j < k. Let Pj = 〈C1 | C2 | . . . | Cr〉 be as in Notation 5.2.9.
Let

J := {Ca | 1 ≤ a ≤ r and there exists x ∈ Ca such that x|Ωj+1 6= 1}

and let CJ = ∪Ca∈JCa. Let P ′ be the partition with cells CJ and all Ca for Ca 6∈ J .
Then Pj+1 = P ′.

Proof. First, we verify that P ′ satisfies Equation (5.3). Let C ′a and C ′b be distinct cells
of P ′. Let xu ∈ C ′a and xv ∈ C ′b. We show that Supp(xu|∆j+1) ∩ Supp(xv|∆j+1) = ∅ by
showing that Supp(Mu,j+1) ∩ Supp(Mv,j+1) = ∅. Suppose first that C ′a, C ′b 6∈ J , then
C ′a and C ′b are cells of Pj . So Supp(Mu,j)∩ Supp(Mv,j) = ∅. By the definition of J , we
have Mu,j+1 = Mv,j+1 = 0, and so indeed Supp(Mu,j+1) ∩ Supp(Mv,j+1) = ∅.
Suppose now that C ′a 6∈ J and C ′b = CJ . Then Mu,j+1 = 0, and so Supp(Mu,j+1) ∩
Supp(Mv,j+1) = Supp(Mu,j) ∩ Supp(Mv,j). Since CJ is a union of cells of Pj , there
exists a cell C of Pj such that xv ∈ C. Then by the definition of Pj , we have that
Supp(Mu,j) ∩ Supp(Mv,j) = ∅. So P ′ indeed satisfies Equation (5.3).

It remains to show that P ′ is the finest possible partition of the generators. Let C ′a
be a cell of P ′. We show that there does not exists a proper subset T ′ ⊂ C ′a such
that Supp(Mu,j+1) ∩ Supp(Mv,j+1) = ∅ for all xu ∈ T ′ and xv ∈ C ′a\T ′. Aiming for a
contradiction, assume that such a T ′ exists.
Suppose first that C ′a 6∈ J . Then we have Supp(Mu,j+1) = Supp(Mu,j) for all xu ∈ C ′a.
So Supp(Mu,j) ∩ Supp(Mv,j) = ∅ for all xu ∈ T ′ and xv ∈ C ′a\T ′. Since C ′a is a cell of
Pj , this contradicts that Pj is the finest partition satisfying Equation (5.3).
So C ′a = CJ . By the definition of J , for all C ∈ J , there exists xu ∈ C such that
Mu,j+1 6= 0. Observe that T ′ either contains all such xu or none of them. Without loss
of generality, suppose that T ′ contains all such xu. So T ′ ∩ C 6= ∅ for all C ∈ J . By
Remark 5.2.10, T ′ ∩ C is a union of cells of Pj , so the entire cell C is contained in T .
Hence CJ ⊆ T . Since T ′ ⊆ CJ , we have T ′ = CJ , which is a contradiction.

Hence, we have the main result of this subsection.

Proposition 5.2.12. Let H be as in Definition 5.1.2. Let M ∈M(s, k,Fp) be a given
generator matrix of γ(H) in standard form. Then the partitions Pj from Notation 5.2.9
and so the partition P can be computed in O(sα(s)k) time, where α is the inverse
Ackermann function.
Hence the disjoint direct product decomposition of H can be computed in O(sα(s)k)

time.

5.2. Complexity results 87

Proof. We compute the disjoint direct product decomposition of H by computing the
partition P as in Lemma 5.2.8. The partition P is computed by iteratively computing
the Pj in Notation 5.2.9 using Lemma 5.2.11. As in Remark 5.2.10, we initialise Ps to be
the trivial partition consisting of all singletons. We evoke the procedure in Lemma 5.2.11
O(k) times to compute the partitions Pj for each s < j ≤ k. It remains to show that
the procedure in Lemma 5.2.11 can be computed in time O(sα(s)).
To compute Pj+1, we merge cells of Pj if the cells contain a permutation x such that
x|Ωj+1 6= 1. Checking if the projection of each x on Ωj+1 is trivial can be done in constant
time by checking if the corresponding row of M has 0 at the (j + 1)-st position. We
construct Pj+1 using the Union-Find data structure, which has a worst case complexity
of O(sα(s)) [TvL84].

5.2.3 Normalising elements that permute the H-orbits

Let L = B o K be as in Proposition 5.1.8 and recall that NSn(H) ≤ L. In Proposi-
tion 5.2.18, we show that given a non-trivial element κ ∈ K, in polynomial time, we
can decide if there exists an element of NSn(H) which induces the permutation κ on
the H-orbits.

Lemma 5.2.13. Let F := GLs(p)×D. Define an action of F on M(s, k,Fp) by

M (R,d) = R−1Md for all R ∈ GLs(p) and d ∈ D.

Let κ ∈ K ≤ Sn. Let M,M ′ ∈M(s, k,Fp) be generator matrices of γ(H) and γ(Hκ−1
)

respectively. Then there exists ν ∈ B such that νκ ∈ NSn(H) if and only if there exists
f ∈ F such that Mf = M ′.

Proof. Let ν ∈ B. Then νκ ∈ NSn(H) if and only if Hν = Hκ−1 , which means that H
and Hκ−1 are in the same B-orbit. By Lemma 5.1.13, this is equivalent to γ(H) and
γ(Hκ−1

) being in the same D-orbit.
Observe that 〈M〉 = 〈M ′〉 if and only if M and M ′ are in the same orbit under left
multiplication by GLs(p). Therefore H and Hκ−1 are in the same B-orbit if and only
if M and M ′ are in the same F -orbit.

We decide if M and M ′ are in the same F -orbit by comparing their orbit rep-
resentatives. Algorithm 1 of [Feu09] computes such representatives for matrices A ∈
M(s, k,Fp). Since we will be proving its complexity, we will present our minor variation
of the algorithm here.

We first define an ordering on M(s, k,Fp). Let A,A′ ∈M(s, k,Fp). Let AR∗,i denote
A∗,i reversed. Then we define A ≺ A′ if there exists j such that A∗,i = A′∗,i for 1 ≤ i < j

but AR∗,j <lex A
′R
∗,j , where <lex denotes the lexicographic ordering. We define the orbit

representative of A under F to be the least image under the ordering ≺. Recall that
we denote the tuple (1, 2, . . . , i) by i.

88 Chapter 5: Normalisers of Groups In Class InP(Cp)

In Feulner’s paper, he computes a series of partitions called the support partitions,
which we now define.

Definition 5.2.14. Let A ∈M(s, k,Fp). For all 1 ≤ j ≤ k, the j-support partition Qj
of A is the finest partition of {1, 2, . . . , s} such that for 1 ≤ i ≤ j, there exists a unique
cell C of Qj such that Supp(A∗,i) ⊆ C.

We show that the support partitions and the partitions Pj from Notation 5.2.9 are
equivalent.

Lemma 5.2.15. Let Qj be as in Definition 5.2.14. For 1 ≤ i ≤ s, let xi := γ−1(Ai,∗)

and let Pj be as in Notation 5.2.9. For each cell C of Qj, let C̃ := {xu | u ∈ C}. Let
Q̃j be the partition of {x1, x2, . . . , xs} consisting of such cells C̃. Then Q̃j = Pj.

Proof. Let Ca and Cb be distinct cells of Qj . Let ∆j = ∪ji=1Ωi. First we show
that Supp(xu|∆j) ∩ Supp(xv|∆j) = ∅ for all xu ∈ C̃a and xv ∈ C̃b by showing that
Supp(Mu,j) ∩ Supp(Mv,j) = ∅.
Let u ∈ Ca and v ∈ Cb. If there exists t ∈ Supp(Mu,j) ∩ Supp(Mv,j), then Mu,t and
Mv,t are both non-zero. So Supp(M∗,t)∩Ca 6= ∅. Then by the definition of Qj , we have
Supp(M∗,t) ⊆ Ca. Similarly, Supp(M∗,t) ⊆ Cb, which is a contradiction.

Next we show that Q̃j is the finest possible. Suppose that there exists T ⊂ C̃a such
that Supp(xu|∆j) ∩ Supp(xv|∆j) = ∅ for all xu ∈ T and for all xv ∈ C̃a\T . Let
Ca1 := {1 ≤ u ≤ s | xu ∈ T} and Ca2 := {1 ≤ u ≤ s | xu ∈ C̃a\T} be disjoint subsets
of C̃a. Define Rj to be the partition of s consisting of cells Ca1, Ca2 and all other cells
Cb of Qj where b 6= a. Then Rj is a partition finer than Qj . We shall show that for
all 1 ≤ i ≤ j, there exists a unique cell C of Rj such that Supp(M∗,i) ⊆ C, which
contradicts the finest property of Qj .
Let 1 ≤ i ≤ j. Then by the definition of Qj , there exists a cell C of Qj such
that Supp(M∗,i) ⊆ C. If C 6= Ca, then we are done. Suppose now that C =

Ca. If Supp(M∗,i) intersects both Ca1 and Ca2 non-trivially, then there exists u ∈
Ca1 and v ∈ Ca2 such that both Mu,i and Mv,i are non-zero. This implies that
Supp(Mu,j) ∩ Supp(Mv,j) 6= ∅, which contradicts the definition of T . Therefore, ei-
ther Supp(M∗,i) ⊆ Ca1 or Supp(M∗,i) ⊆ Ca2.

Next, we will present a simplified version of Algorithm 1 in [Feu09]. The differences
are as follows.

• Feulner considers codes over arbitrary finite fields, but we restrict to fields of prime
order.

• We assume that A is in standard form. Feulner did not make this assumption.

• For 1 ≤ j ≤ k, let D[j] ∼= (F∗p)
j be the subgroup of D consisting of matrices

diag(t1, t2, . . . tj , 1, 1, . . . , 1) for t1, t2, . . . tj ∈ F∗p. Algorithm 1 in [Feu09] computes

5.2. Complexity results 89

the orbit representative of A under the action of GLs(p) ×D[j+1] given an orbit
representative of A under the action of GLs(p) ×D[j]. We compute the F -orbit
representative of A directly.

• Feulner’s algorithm performs row reduction, computes the partition Qj+1 and
computes the orbit representative of A under the action of GLs(p)×D[j+1] simul-
taneously. We first row reduce A and compute all Qj .

Lemma 5.2.16. Let A ∈ M(s, k,Fp) be such that the first s columns are linearly
independent. Let f ∈ F be such that Af is row-reduced. Then Af � A and so Af is the
orbit representative of A under the action of GLs(p)×D[s].

Proof. Since the first s columns of A are linearly independent, (Af)∗,s is an identity
matrix. Since the s lexicographically smallest vectors of Fsp are (Af)R∗,1, (Af)R∗,2, . . . ,

(Af)R∗,s, we have Af � A.

Algorithm 5 Computing the orbit representative of A ∈M(s, k,Fp) under the action
of F
Input: A ∈M(s, k,Fp), where the first s columns are linearly independent
Output: F -orbit representative A′ of A and f ∈ F such that A′ = Af

1: Let A′ be a row-reduced copy of A . O(sk2)
2: Get the j-support partition Qj of A′ for 1 ≤ j ≤ k

. O(sα(s)k) by Proposition 5.2.12 and Lemma 5.2.15
3: for j ∈ [s, s+ 1, . . . , k − 1] do . O(k) times
4: for i ∈ [s, s− 1, . . . , 1] do . O(s) times
5: C ← cell of Qj such that i ∈ C . Finding C is O(s)
6: u← A′i,j
7: T ← {t ∈ C | A′t,j+1 6= 0} . Getting T is O(s)
8: if u 6= 0 and T = ∅ then
9: for r ∈ C do . O(s) times

10: Multiply row A′r,∗ by u−1 . O(k) multiplications
11: end for
12: for all 1 ≤ t ≤ j do . O(k) times
13: if ∃c ∈ C such that A′c,t 6= 0 then . O(s) time
14: Multiply column A′∗,t by u . O(s) multiplications
15: end if
16: end for
17: end if
18: end for
19: end for
20: return A′ and f ∈ F such that A′ = Af

Theorem 5.2.17. Let A ∈ M(s, k,Fp) be such that the first s columns are linearly
independent. Then Algorithm 5 returns the orbit representative of A under F in time
O(s2k2).

90 Chapter 5: Normalisers of Groups In Class InP(Cp)

Proof. The correctness follows from Lemma 5.2.16 and [Feu09]. We can write A in
reduced row echelon form in time O(sk2) using Gauss-Jordan elimination [BF73]. By
Proposition 5.2.12 and Lemma 5.2.15, the Qj can be computed in O(sα(s)k) time,
where α is the inverse Ackerman function. We store each partition Qj by storing an
array Lj such that for i ≤ s, we have that i is in cell CLj [i] of Qj , where Lj [i] denotes
the i-th element of Lj . Computing each Lj takes O(s) time.
Then we can get C of line 5 by computing the positions of CLj [i] in Lj , which can
be done in O(s) time. Since C has at most size s, obtaining T can be done in O(s)

time. Similarly, line 13 is of O(s) complexity. Hence the algorithm has complexity
O(sk2 + sα(s)k + sk + ks(s+ s+ sk + k(s+ s))) = O(s2k2).

Lastly, we see how we use Algorithm 5 to decide if there exists an element of NSn(H)

which induces a given permutation on the H-orbits.

Proposition 5.2.18. Let H ≤ Sn such that H ∈ InP(Cp). Let L = B oK be as in
Proposition 5.1.8 and let κ ∈ K. Assume that we have generator matrices M,M ′ ∈
M(s, k,Fp) for γ(H) and γ(Hκ−1

). Then in O(s2k2), we can determine if there exists
ν ∈ B such that νκ ∈ NSn(H), and output such a ν if it exists.

Proof. By Lemma 5.2.13, such a ν exists if and only if M and M ′ are in the same
F -orbit and so have the same F -orbit representative. By Theorem 5.2.17, elements
(R1, d1) and (R2, d2) of F mapping M and M ′ respectively to their orbit representative
under F can be computed in in O(s2k2).
If the orbit representatives are different, then no such ν exists, so we assume that
M and M ′ have the same orbit representative. Let σ be as in Lemma 5.1.13. Since
M (R,d1)(R′,d2)−1

= M ′, we have 〈M〉d1d
−1
2 = 〈M ′〉. Therefore Hσ−1(d1d

−1
2) = Hκ−1 and

hence σ−1(d1d
−1
2)κ ∈ NSn(H). So ν = σ−1(d1d

−1
2).

5.2.4 Computing NSn(H) by searching in K

Recall L = B o K from Proposition 5.1.8. In this subsection, we will first show in
Proposition 5.2.21 that given the finest disjoint direct product decomposition of H,
we can efficiently compute NB(H). Then in Theorem 5.2.22, we see how the results
in earlier subsections come together to show that NSn(H) for H ∈ InP(Cp) can be
computed in time O((np)!).

We start by showing that CB(H) is the enveloping group G of H.

Lemma 5.2.19. Let H ∈ InP(Cp) and let G be the enveloping group of H. Let B be
as in Proposition 5.1.8. Then CB(H) = G.

Proof. ≤: Let Ω1,Ω2, . . . ,Ωk be the orbits of H. Since B fixes each H-orbit setwise,
we have CB(H) ≤ CSym(Ω1)(H|Ω1)× CSym(Ω2)(H|Ω2)× . . .× CSym(Ωk)(H|Ωk) = G.
≥: Let {g1, g2, . . . , gk} be a generating set of G ≤ B. Then as H and G are abelian,
each gi centralises H.

5.2. Complexity results 91

Let X be a generating set of H corresponding to the rows of M in standard form,
as in Notation 5.2.5. Next we show that each element of NB(H) conjugates elements
of X with non-disjoint supports to the same power.

Lemma 5.2.20. Let ν ∈ NB(H). Let xi, xj ∈ X be such that Supp(xi)∩Supp(xj) 6= ∅.
Then there exists 1 ≤ u ≤ p− 1 such that xνi = xui and xνj = xuj .

Proof. Since xνi ∈ H, the image γ(xνi) ∈ 〈M〉 and hence γ(xνi) is a linear combination of
the rows of M . Since M∗,s is an identity matrix, Mi,i 6= 0 and Mi,l = 0 for all 1 ≤ l ≤ s
such that l 6= i. Then since ν setwise stabilises each H-orbit, γ(xνi)i 6= 0 and γ(xνi)l = 0

for all 1 ≤ l ≤ s where l 6= i. Hence γ(xνi) is a multiple of Mi,∗ = γ(xi) and therefore
there exists t ∈ F∗p such that γ(xνi) = γ(xi)t. Then xνi = xti. Similarly, there exists t′

such that xνj = xt
′
j . We shall show that t = t′.

Let Ωu be an H-orbit such that Ωu ⊆ Supp(xi) ∩ Supp(xj). Let gu = gφu1 , as in
Definition 5.1.2. Let 1 ≤ ru ≤ p− 1 be such that xi|Ωu = gruu . Then since xνi = xti, we
have

(gruu)ν|Ωu = (xi|Ωu)ν|Ωu = (xνi)|Ωu = (xti)|Ωu = (xi|Ωu)t = grutu .

Hence gν|Ωuu = gtu. Similarly, since Ωu ⊆ Supp(xj), we have that gν|Ωuu = gt
′
u . Therefore

t = t′.

Now we show that given the finest disjoint direct product decomposition of H, we
can compute NB(H) in polynomial time. Recall that for ∆ ⊆ Ω, we identify Sym(∆)

as a subgroup of Sym(Ω).

Proposition 5.2.21. Let H ∈ InP(Cp) with orbits Ω1,Ω2, . . . ,Ωk. Let G be the en-
veloping group of H and let H = R1×R2× . . .×Rr be the finest disjoint direct product
decomposition of H. Let B be the group generated by NSym(Ωi)(H|Ωi) for all 1 ≤ i ≤ k.
Then NB(H) can be computed in polynomial time.

Proof. Let g1, g2, . . . , gk be the standard generators of G, as in Definition 5.1.2. Let
t ∈ F∗p be primitive. For 1 ≤ i ≤ r, let Γi = Supp(Ri) and ηi ∈ Sym(Γi) such that
gηij = gtj for all gj such that Supp(gj) ⊆ Γi. We first show that

NB(H) = 〈G, η1, η2, . . . , ηr〉. (5.4)

≥: By Lemma 5.2.19, G = CB(H) ≤ NB(H). To show that each ηi is in NB(H), let
h ∈ H. Then we can write h = h1h2 . . . hr with hj ∈ Rj , and so hηi = hηi1 h

ηi
2 . . . hηir . If

i 6= j, then since hj and ηi have disjoint supports, hηij = hj . Therefore hηi ∈ H if and
only if hηii ∈ Ri.
If Ωu ⊆ Γi, then hi|Ωu = gru for some r, and so

(hηii)|Ωu = (hi|Ωu)ηi|Ωu = (gru)ηi|Ωu = grtu = (hi|Ωu)t.

92 Chapter 5: Normalisers of Groups In Class InP(Cp)

Therefore hηii = hti ∈ Ri.
≤: Let ν ∈ NB(H). For 1 ≤ i ≤ r, let νi = ν|Γi . We show that νi ∈ 〈G, ηi〉 for all i,
from which the containment follows.
By Lemma 5.2.20, there exists ta ∈ F∗p such that xνi = xt

a for all x ∈ X ∩ Ri. So
xνi = xt

a
= xη

a
i . Therefore νi ∈ 〈CB(Ri), η

a
i 〉 ≤ 〈G, ηi〉.

Now that we have proved Equation (5.4), for the complexity result, by Lemma 5.1.3,
the gi can be computed in polynomial time. Since conjugacy of permutations in the
symmetric group is in polynomial time, each ηi can be computed in polynomial time.
Therefore NB(H) can be computed in polynomial time.

Lastly, we show that to compute NSn(H) for H ∈ InP(Cp), it suffices to search in
K. Our implementation to compute NSn(H) will use the procedure described in the
following proof.

Theorem 5.2.22. The Norm-Sym problem for H = 〈X〉 ≤ Sn where H ∈ InP(Cp)

can be computed in time 2
O(n

p
log n

p
).

Proof. By Lemma 5.1.1, we can recognise that H ∈ InP(Cp) in polynomial time. By
Lemma 5.1.3, in polynomial time, we can compute the generators g1, g2, . . . , gk of G
and hence obtain the map γ : G → Fkp as in Definition 5.1.4. Since row reduction
can be computed in polynomial time [BF73], we may obtain a generator matrix M of
γ(H) = 〈γ(x) | x ∈ X〉 in standard form in polynomial time. By Proposition 5.2.12, we
can compute the finest disjoint direct product decomposition of H in polynomial time.
Next we compute CSn(H) and NB(H), which can be computed in polynomial time by
Theorem 2.1.16 and Proposition 5.2.21 respectively. Initialise N as 〈CSn(H), NB(H)〉.
For each κ ∈ K, using Proposition 5.2.18, in polynomial time, we determine if there
exists ν ∈ B such that νκ ∈ NSn(H). If such a ν exists, we update N as 〈N, νκ〉. The
procedure above can be done in time O((np)!) = 2

O(n
p

log n
p

).
By the end of the procedure, we have N ≤ NSn(H). To show NSn(H) ≤ N , let
g ∈ NSn(H). Then since g ∈ L = B o K, by Lemma 4.3.11, we can find κ ∈ K and
ν ∈ B such that g = νκ. If κ = 1, then g ∈ NB(H) and so g ∈ N . Suppose now
that κ 6= 1. Using Proposition 5.2.18, we would have found an element ν ′ ∈ B such
that ν ′κ ∈ NSn(H), so ν ′κ ∈ N . Then νκ(ν ′κ)−1 = νν ′−1 ∈ NB(H) ≤ N . Therefore
g = νκ ∈ N .

Theorem 5.0.1 now follows. Note that Proposition 5.2.3 gives better complexity than
Theorem 5.2.22 when p ≤ k. However, the algorithm for Proposition 5.2.3 requires the
checking of all elements of (F∗p)

m, which we do not have useful pruning for. When p and
m are large, this becomes infeasible (see Figure 5.2). Our implementation will instead
follow the method described in Theorem 5.2.22.

5.3. Pruning techniques 93

5.3 Pruning techniques

Recall that we computeNSn(H) using backtrack search. In this section, we present some
pruning techniques which improve the performance of normaliser algorithms, arising
from the view of H ∈ InP(Cp) as a linear code over Fp. We will give more details of
how we apply these results to computing NSn(H) in Section 5.4. By Lemma 5.2.2, the
pruning tests in this section can be used on H⊥ as well.

First, we show that the stabilisers and the equivalence of orbits can be computed
using M . Recall ≡o from Definition 2.1.10.

Lemma 5.3.1. Let β be a point in a H-orbit Ωj. Let M ∈ M(s, k,Fp) be a generator
matrix for γ(H). If M∗,j has a unique position i with non-zero entry, then γ(H(β)) =

〈Ms\i,∗〉.

Proof. ≥: By our assumption on M∗,j , we have Ms\i,j is the zero vector, so γ−1(Ms\i,∗)

fixes β.
≤: Let h ∈ H(β). Then γ(h) is a linear combination of rows of M and so there exists
a1, a2, . . . , as ∈ Fp such that γ(h) =

∑s
i=1 aiMi,∗. Since H|Ωi is regular, (H|Ωi)(β) = 1,

so γ(h)i = 0. Since Mi,∗ is the only row of M with non-zero entry in the j-th position,
ai = 0, and so γ(h) ∈ 〈Ms\i,∗〉.

Note that the assumption on M∗,j in the previous lemma can be achieved by per-
forming row operations. Hence the stabiliser of any point can be computed this way.

Lemma 5.3.2. Let M be the row-reduced generator matrix of γ(H). Then Ωi ≡o Ωj if
and only if there exists d ∈ F∗p such that M∗,j = dM∗,i.

Proof. ⇐: Recall the p-cycles gi from Definition 5.1.2. Fix α ∈ Ωi and β ∈ Ωj . Define
a mapping ψ : Ωi → Ωj by setting ψ(αg

t
i) = βg

dt
j for 0 ≤ t ≤ p− 1. Since 〈gi〉 and 〈gdj 〉

are isomorphic and regular, ψ is a bijection. We show that ψ satisfies Definition 2.1.10
and so Ωi ≡o Ωj .
Let h ∈ H and δ ∈ Ωi. Then δ = αg

r
i for some r. Let γ(h)i = vi. Then γ(h)j = dvi and

so h|Ωi = gvii and h|Ωj = gdvij . Hence

ψ(δh) = ψ(δg
vi
i) = ψ(αg

r+vi
i) = βg

d(r+vi)
j = (βg

dr
j)g

dvi
j = ψ(αg

r
i)g

dvi
j = ψ(δ)h.

⇒: By Lemma 2.1.12, there exists an involution l ∈ Sn with support Ωi ∪ Ωj such
that h|Ωj = (h|Ωi)l, for all h ∈ H. Let h ∈ H and vi = γ(h)i and vj = γ(h)j . Then
h|Ωi = gvii and h|Ωj = g

vj
j . Then (gli)

vi = (gvii)l = (h|Ωi)l = h|Ωj = g
vj
j . Let gli = gdj .

Then gdvii = g
vj
j and so vj = dvi.

Hence we can determine if Ωi ≡o Ωj by checking the equality of M−1
ti,i
M∗,i and

M−1
tj ,j
M∗,j , where ti and tj are the first non-zero positions of M∗,i and M∗,j respectively.

This can be done in time O(sk + sk2).

94 Chapter 5: Normalisers of Groups In Class InP(Cp)

Definition 5.3.3. Two columns M∗,i and M∗,j of M are equivalent if Ωi ≡o Ωj . We
denote this by M∗,i ≡o M∗,j .

Next, we show how we can use linearly dependent columns of M together with
Lemma 2.4.16 to prune the search tree.

Definition 5.3.4. A set V of linearly dependent vectors are minimally linearly depen-
dent if no proper subset U ⊂ V is linearly dependent.

Notation 5.3.5. Let J be a subset of {1, 2, . . . , k}. Denote the union ∪j∈JΩj by ΩJ .

Lemma 5.3.6. Let I and J be subsets of {1, 2, . . . , k}. Let g ∈ NSn(H) such that
Ωg
I = ΩJ . Then the column rank of M∗,I is equal to the column rank of M∗,J . Hence

1. the columns of M∗,I are linearly independent if and only if the columns of M∗,J
are linearly independent;

2. the columns of M∗,I are minimally linearly dependent if and only if the columns
of M∗,J are minimally linearly dependent.

Proof. Part 1: Let rI and rJ be the column ranks of M∗,I and M∗,J respectively. Since
H|ΩI andH|ΩJ are conjugate in Sym(ΩI∪ΩJ), we have prI = |(H|ΩI)| = |(H|ΩJ)| = prJ ,
so rI = rJ . The result follows since the columns of M∗,I are linearly independent if and
only if |(H|ΩI)| = p|J |.
Part 2: We show that the columns of M∗,I are minimally linearly dependent if and
only if |(H|ΩI)| = p|I|−1. Suppose that the columns of M∗,I are minimally linearly
dependent. Let i ∈ I. Since M∗,i is a linear combination of columns of M∗,I\i, we have
|〈M∗,I〉| = |〈M∗,I\i〉|. By the definition of a minimally dependent set, the columns of
M∗,I\i are linearly independent, so |(H|ΩI)| = |〈M∗,I〉| = |〈M∗,I\i〉| = p|I|−1.

Let C be a code. Let the weight wt(c) of c ∈ C be the number of 1 ≤ i ≤ k such
that ci 6= 0. and let wi be the number of c ∈ C of weight i. Then the weight enumerator
of C is the polynomial

∑k
i=1wix

i.

Lemma 5.3.7. 1. Let ∆,Γ ⊆ Ω be such that |H(∆)| = |H(Γ)| = pt, say. Let
M(∆),M(Γ) ∈ M(t, k,Fp) be generator matrices of H(∆) and H(Γ) respectively.
If H(∆) and H(Γ) are conjugate in Sn, then there exists a bijection δ between the
≡o-classes of columns of M(∆) and of columns of M(Γ) that preserves the size of
the classes.

2. Let Q,Q′ ≤ H such that Q′ = Qr for some r ∈ Sn. Then γ(Q) and γ(Q′) have
the same weight enumerator.

3. Let T be the set of minimum weight vectors in γ(H). Then NSn(H) setwise
stabilises γ−1(T).

5.3. Pruning techniques 95

Proof. Part 1: Follows from Lemma 4.1.1, and Ωi ≡o Ωj if and only if M∗,i ≡o M∗,j .
Part 2: We show that the number of cycles in h ∈ H is equal to the weight of γ(h).
Then the result follows since conjugation preserves cycle structures.
By the definition of γ, we have γ(h)i 6= 0 if and only if h|Ωi 6= 1. Since h|Ωi is either
trivial or a p-cycle, γ(h)i 6= 0 if and only if h|Ωi is a p-cycle.
Part 3: Let ν ∈ NSn(H). Since conjugation preserves cycle structure, for all t ∈ T , we
have thatwt(γ(tν)) = wt(γ(t)), and so γ−1(tν) ∈ γ−1(T).

By Lemma 2.4.9, the search tree can be pruned by determining when two stabilisers
are not conjugate in Sn. Parts 1 and 2 show how we can decide the non-conjugacy of
stabilisers. Note that since there is no known polynomial-time algorithm for computing
the weight enumerator, we use a simple heuristic to determine when we use Part 2 (see
Algorithm 10). We find a set stabilised by NSn(H) using Part 3, which can be used to
further reduce our search tree (see Algorithm 7).

Lastly, we give a technical lemma which can be used to prune the search tree at
depth m > s, where |H| = ps.

Lemma 5.3.8. Let M ∈ M(s, k,Fp) be a generator matrix of γ(H) in standard form.
Fixm ∈ {s, . . . , k} and let J = {1, . . . ,m}∪̇{t} ⊆ {1, 2, . . . , k}. Let f : J → {1, 2, . . . , k}
be an injection. If there exists 1 ≤ i ≤ s such that

Mi,tf 6= 0 and Mi,jfMj,t = 0 for all j ∈ J ∩ {1, 2, . . . , s}, (5.5)

then there does not exist η ∈ NSn(H) such that Ωη
j = Ωjf for all j ∈ J .

Proof. Aiming for a contradiction, assume that such an i and η exist. Then by Part 4
of Lemma 5.1.13, Ξ(η) ∈ MAut(γ(H)). So there exist d = diag(v1, v2, . . . , vk) ∈ D and
q ∈ P such that Ξ(η) = dq. Let M ′ = Mdq. Then as in Definition 5.1.10, for all j ∈ J
and 1 ≤ i ≤ s,

M ′i,j = vjfMi,jf . (5.6)

In particular, M ′i,t = vtfMi,tf , which is non-zero.
Since dq ∈ MAut(M), each row of M ′ is a linear combinations of the rows of M . Since
M is in standard form, M ′i,∗ =

∑s
u=1M

′
i,uMu,∗. Then

M ′i,∗ =
s∑

u=1

M ′i,uMu,∗ =
s∑

u=1

vufMi,ufMu,∗,

where the second equality follows from Equation (5.6). Therefore by Equation (5.5),
M ′i,t =

∑s
u=1 vufMi,ufMu,t = 0, a contradiction.

The rationale behind Lemma 5.3.8 is as follows. If there exists a κ ∈ K represented
by a leaf under the current node at depth m > s such that νκ ∈ NSn(H) for some
ν ∈ B, then there exists d ∈ D such that dρ(κ) ∈ MAut(γ(H)). Let M ′ := Mdρ(κ).

96 Chapter 5: Normalisers of Groups In Class InP(Cp)

Then we know, up to s unknown scalars from F∗p, the first s columns of M ′. Since rows
of M ′ are linear combinations of the rows of M and the elements of 〈M〉 are defined by
their first s coordinates, we now know the whole of M ′, up to s unknown scalars. So
if we can deduce that some entries of M ′ must be zero, then we may prune the search
tree.

5.4 Algorithm

Given a generating set X of H ≤ Sn such that H ∈ InP(Cp), we compute NSn(H)

using Algorithm 6. The algorithm roughly follows that described in Theorem 5.2.22,
with extra steps for the pruning of the search tree.

The overview of the algorithm is as follows. We first represent H and H⊥ by gen-
erator matrices M and M⊥ respectively over Fp. Then we compute CSn(H), which
may allow us to compute the normaliser of a group with a smaller degree, as in Propo-
sition 4.1.6. We then compute NB(H), where B is as in Proposition 5.1.8. That is,
we compute all normalising elements fixing the H-orbits. Lastly, we perform backtrack
search in K ∼= Sk to find the remaining normalising elements.

For this section, we shall assume that γ(H) has dimension s ≤ k/2. To simplify
notation, we shall also assume that H has no equivalent orbits. See Proposition 4.1.6
for the reduction to this case.

Algorithm 6 Computing the normaliser of H ∈ InP(Cp)

Input: A generating set X of H ≤ Sn, where H ∈ InP(Cp) and H has no equivalent
orbits.
Output: NSn(H)

1: Check that H ∈ InP(Cp) . polynomial by Lemma 5.1.1
2: Compute orbits O = {Ω1,Ω2, . . . ,Ωk} of H . polynomial by Proposition 2.1.2
3: Compute the enveloping group G of H . polynomial by Lemma 5.1.3
4: Let γ : G→ Fkp be as in Definition 5.1.4
5: Initialise N ← G . CSn(H) = G
6: Let M be a generator matrix of γ(H) in standard form
7: Let M⊥ be a generator matrix of γ(H⊥) . where H⊥ is as in Definition 5.2.1
8: N ← 〈N,NB(H)〉 . using Proposition 5.2.21
9: domains← domainsInit(M,M⊥) . see Algorithm 7
10: LDScols← {{i} ∪ {1 ≤ j ≤ s |Mj,i 6= 0} | s+ 1 ≤ i ≤ k}
11: dualLDScols← {{i} ∪ {k − s ≤ j ≤ k | (M⊥)j,i 6= 0} | 1 ≤ i ≤ k − s}
12: recurseSearch([]) . see Algorithm 8
13: return N

All algorithms are implemented in GAP, apart from makeInvariantSetPartn in
Algorithm 7, which is implemented in C++, as it is time critical1.

1This implementation of makeInvariantSetPartn in C++ is done by Dr Christopher Jefferson.

5.4. Algorithm 97

Pre-search

We shall describe the computation before the backtrack search. By the end of step 11,
N contains NB(H) ≥ CSn(H). So as in Theorem 5.2.22, this allows us to only search
for non-trivial elements κ ∈ K which give rise to elements of NSn(H). We will also be
computing various structures we shall use later in the search.

We start by describing lines 1–11 of Algorithm 6 in more detail:

Lines 1–4 We set up the map γ which enable us to compute NSn(H) by computing
MAut(γ(H)), as in Theorem 5.1.15.

Line 5 We gather the normalising elements we find as N . We start by initialising
N = G. Since we assume that H has no equivalent orbits, N contains CSn(H) by
Proposition 2.1.13.

Lines 6–7 We represent H as a code over Fp. We compute the a generator matrix
M of γ(H) using X. Since H has no equivalent orbits, the row-reduced matrix
M is in standard form. We shall be using H⊥ as in Definition 5.2.1. We can
compute the generator matrix M⊥ of γ(H)⊥ as follows. If M = (Is | M0) for
some M0 ∈ M(k − s, s,Fp), then M⊥ := (MT

0 | Ik−1) is a generator matrix of
γ(H)⊥ [vL99]. We will use γ(H)⊥ to refine our search via Lemma 5.2.2.

Line 8 We first compute the finest disjoint direct product decomposition of H, as
in Proposition 5.2.12. Then as in Proposition 5.2.21, we compute NB(H). We
update N as 〈N,NB(H)〉.

Line 9 For each H-orbit Ωi, we compute a set of possible images of Ωi under NSn(H),
called the domain of Ωi. This gives an approximation of NSn(H) and will be used
to guide our search in Algorithm 8. We use various methods to restrict the initial
domains. More details will be given later in Algorithm 7.

lines 10–11 We compute certain sets of linearly dependent columns of M and M⊥.
We shall explain how we use these sets for pruning later. Since M is assumed
to be in standard form, the standard basis of Fsp forms the first s columns of M .
Therefore we can write each later column of M as a linear combination of these
s columns. More specifically, each element of LDScols is the column positions of
a linearly dependent set formed by column M∗,i for s+ 1 ≤ i ≤ k and a subset of
the first s columns of M .
As noted in lines 6–7, the standard basis of Fk−sp forms the last k − s columns of
M⊥.

Algorithm 7: Initialising the domains

We describe how we initialise the domains using Algorithm 7. We will be computing
several partitions of O, each preserved by NSn(H). Hence the meet P∗ of these parti-

98 Chapter 5: Normalisers of Groups In Class InP(Cp)

tions is also preserved by NSn(H). We update the domains by setting the domain of Ωi

to be the cell of P∗ containing it.

makeDualEquivPartn We first find the equivalent orbits ofH⊥ using Lemma 5.3.2.
In line 12, we construct certain elements g centralisingH⊥, as in Proposition 2.1.13.
Using Lemmas 4.3.11 and 5.2.2, for each g we construct a corresponding element
of NSn(H). Next, we compute a partition P⊥e of O based on sizes of the equiva-
lence classes for H⊥. By Lemma 4.1.1, NSn(H⊥) preserves P⊥e . By Lemma 5.2.2,
NSn(H) also preserves P⊥e . Note that in the algorithm, we store P⊥e by a partition
of the indices {1, 2, . . . , k}.

makeStabilisersPartn This uses Lemma 2.4.9 to further refine the initial do-
mains. That is, if there exists g ∈ NSn(H) such that Ωg

i = Ωj , then by Part 1 of
Lemma 5.3.7, there exists a bijection from the equivalence classes of ≡o over the
H(Ωi)-orbits to the equivalence classes of ≡o over the H(Ωj)-orbits which preserves
the class sizes. By Lemma 5.3.1, the matrices representing the stabilisers can be
computed efficiently. Using Lemma 5.2.2, this algorithm also works using the dual
H⊥.

makeInvariantSetPartn Here we compute the set invSet of minimal weight vec-
tors of γ(H). By Part 3 of Lemma 5.3.7, NSn(H) stabilises invSet. The algorithm
runs in exponential time by systematically considering linear combinations with
increasing numbers of non-zero coefficients of rows of M . The variable m gives
the minimal weight of all the vectors we have encountered so far. Since Ms,s is
the identity matrix, if v is a linear combination with non-zero coefficients of i
rows of M , then wt(v) ≥ i. Since we are only interested in vectors with weight
at most m, we only need to consider all such linear combinations v of up to m
rows of M . Lastly, we obtain a partition of Ω1,Ω2, . . . ,Ωk stabilised by NSn(H)

by considering the number of vectors in invSet with non-zero entries in each Ωi.

Therefore, the normaliser NSn(H) preserves the partitions P⊥e , Ps, P⊥s , PI and
hence P∗. The function domainsInit returns a list of sets domains, where each entry
domains[i] is a subset of {1, 2 . . . , k} such that if there exists g ∈ NSn(H) with Ωg

i = Ωj

then j ∈ domains[i].

Search

Now we shall describe the recursive search, Algorithm 8. We shall traverse the search
tree depth first, using the domains to guide our search. Note that N is the global
variable which stores the group generated by all elements of NSn(H) we have found so
far.

Line 2 An orbit Ωj will be removed from the domain of Ωi if we show that there are
no normalising elements under the current node that map Ωi to Ωj . When we

5.4. Algorithm 99

Algorithm 7 Initialise domains

1: procedure domainsInit(M,M⊥)
2: P⊥e ← makeDualEquivPartn(M⊥)
3: Ps ← makeStabilisersPartn(M)
4: P⊥s ← makeStabilisersPartn(M⊥)
5: PI ← makeInvariantSetPartn(M)
6: P∗ ←Meet(P⊥e ,Ps,P⊥s ,PI)
7: return [cell of P∗ containing i | 1 ≤ i ≤ k]
8: end procedure

9: procedure makeDualEquivPartn(M⊥)
10: Compute the ≡o-classes of the H⊥-orbits . using Lemma 5.3.2
11: for each pair of equivalent orbits Ωi and Ωj do
12: Let g ∈ CSn(H⊥) conjugate Ωi to Ωj . as in Proposition 2.1.13
13: Find ν ∈ B and κ ∈ K such that g = νκ . using Lemma 4.3.11
14: N ← 〈N, ν−1κ〉 . ν−1κ ∈ NSn(H) by Lemma 5.2.2
15: end for
16: P⊥e ← partition of {1, 2, . . . , k} such that i, j are in the same cell if and only if

|[Ωi]≡o | = |[Ωj]≡o |
17: return P⊥e
18: end procedure

19: procedure makeStabilisersPartn(mat) . mat is M or M⊥

20: for i ∈ [1, 2, . . . , k] do
21: stabi ← γ−1(〈mat〉)(Ωi) . using Lemma 5.3.1
22: Compute the ≡o-classes of the stabi-orbits . using Lemma 5.3.2
23: end for
24: Ps ← partition of {1, 2, . . . , k} such that i, j are in the same cell if and only if

stabi and stabj have same multiset of the sizes of the ≡o-classes
25: return Ps
26: end procedure

27: procedure makeInvariantSetPartn(M)
28: m← min1≤i≤s(wt(Mi,∗)). minimum weight of codewords we have found so far
29: invSet← {i | wt(Mi,∗) = m} . minimum weight codewords found so far
30: for i ∈ [2, 3, . . . ,m] do
31: for all linear combinations v with non-zero coefficients of i rows of M do
32: if wt(v) < m then . finds a vector with smaller weight
33: m← wt(v), invSet← {v}
34: else if wt(v) = m then . finds a minimum weight vector
35: Add v to invSet
36: end if
37: end for
38: end for
39: PI ← partition of {1, 2, . . . , k} such that i, j are in the same cell if and only if

|{v ∈ invSet | v[i] 6= 0}| = |{v ∈ invSet | v[j] 6= 0}|
40: return PI
41: end procedure

100 Chapter 5: Normalisers of Groups In Class InP(Cp)

Algorithm 8 recurseSearch

1: procedure recurseSearch(α = [α1, α2, . . . , αd], indomains)
2: domains← copy(indomains)
3: if d=k then
4: κ← permutation in K such that Ωκ

i = Ωαi for all 1 ≤ i ≤ k
5: if there exists ν ∈ B s.t. νκ ∈ NSn(H) then . using Proposition 5.2.18
6: N ← 〈N, νκ〉
7: Backtrack to node [α1, α2, . . . , αj], where j is the largest integer such that

αi = i for 1 ≤ i ≤ j, if it exists . as in Algorithm 2
8: end if
9: else
10: if [α1, α2, . . . , αd−1] = [1, 2 . . . , d−1] and αd 6= d and αd is not the minimum

value in orbit α
N(α1,α2,...,αd−1)

d then return end if
11: passedTests, domains← checkLDS(M,LDScols, α, domains)

. see Algorithm 9
12: if ¬passedTests then return end if
13: passedTests, domains← checkLDS(M⊥, dualLDScols, α, domains)
14: if ¬passedTests then return end if
15: Mstab← γ(H(Ω1,...,Ωd)) . using Lemma 5.3.1
16: MstabIm← γ(H(Ωα1 ,...,Ωαd))
17: passedTests, domains← compareStabs(Mstab,MstabIm, α, domains)

. see Algorithm 10
18: if ¬passedTests then return end if
19: Mstab⊥ ← generator matrix of γ((H⊥)(Ω1,...,Ωd)) . using Lemma 5.3.1
20: MstabIm⊥ ← generator matrix of γ((H⊥)(Ωα1 ,...,Ωαd))

21: passedTests, domains← compareStabs(Mstab⊥,MstabIm⊥, α, domains)
22: if ¬passedTests then return end if
23: if d > s then
24: for 1 ≤ i ≤ s and t ∈ [s+ 1 ≤ t ≤ k |Mi,αuMu,t = 0] do
25: domains[t]← [j ∈ domains[t] |Mi,j = 0] . using Lemma 5.3.8
26: end for
27: end if
28: domains← allDiffRefiner(domains)
29: if ∃i : domains[i] = ∅ then return end if
30: for αd+1 ∈ domains[d+ 1] do
31: recurseSearch([α1, α2, . . . , αd+1], domains)
32: end for
33: end if
34: end procedure

5.4. Algorithm 101

backtrack, we shall revert to indomains.

Lines 3–9 If d = k, then we have arrived at a leaf node of the search tree. Using
Proposition 5.2.18, we determine if there exists ν ∈ B such that νκ ∈ NSn(H). If
such a ν exists, we update N as 〈N, νκ〉. To ensure that we only add a generating
set of NSn(H) to N , we find the largest j such that i = αi for all 1 ≤ i ≤ j, and
backtrack to node [α1, α2, . . . , αj−1], as in Lemma 2.3.5.

Line 10 This uses Lemma 2.3.6, where for each node [1, 2, . . . , d− 1, αd] such that d 6=
αd, we ensure that αd is the minimum value of the orbit of αd in N(Ω1,Ω2,...,Ωd−1).

Lines 11–22 Here, we perform four additional pruning tests to detect if no normalising
elements are arising from a leaf under the current node. We only do further tests
if we pass all the tests so far. When appropriate, we also refine our domains. More
details on the pruning tests will be given later.

Lines 23–27 This uses Lemma 5.3.8 to prune at depth m > s. If there exists j ∈
domains[t] such that Mi,j 6= 0, then by Lemma 5.3.8, there are no normalising
element under the current node which maps Ωt to to Ωj . Hence we may remove
j from domains[t].

Lines 28&29 Since the images of O must be pairwise different, whenever the domains
are changed, we invoke a simple procedure to further refine the domains. For
1 ≤ i ≤ k, let Ji := {1 ≤ j ≤ k | domains[j] = domains[i]}. If |Ji| = |domains[i]|,
then any normalising element arising under the current node must map {Ωi |
i ∈ Ji} to {Ωi | i ∈ domains[i]}. We remove elements of domains[i] from all
other domains[l] where l 6∈ Ji. That is, for all l 6∈ Ji, we set domains[l] =

domains[l]\domains[i]. More advanced refinements exist but are not considered
in this thesis. For more details, see, for example, [GMN08].

Lines 30–32 If the pruning tests result in empty domains, we backtrack. Otherwise,
we continue the depth first search, branching using domains. Note that we may
also use Lemma 2.3.6 to reduce the partial base images we consider.

Now we describe the pruning tests used in Algorithm 8. These methods use Algo-
rithms 9 and 10.

checkLDS See Algorithm 9. This uses Lemma 2.4.16 to prune the search tree. For
each linearly dependent set in LDScols, if all but one column in the set have been
assigned with an image, we use Lemma 5.3.6 to prune the domain of remaining
column. To do this, we consider each column in the domain and check if it is in
the span of the other columns using the GAP function SolutionMat. If not, by
Lemma 5.3.6, we may remove the column from the domain.

102 Chapter 5: Normalisers of Groups In Class InP(Cp)

Algorithm 9 checkLDS

1: procedure checkLDS(M,LDScols, [α1, α2, . . . , αd], domains)
2: for lds ∈ LDScols do . see Algorithm 6, line 10
3: I ← lds\{1, 2, . . . , d} . unassigned column images
4: if |I| = |lds| − 1 then . image of M∗,I[1] must be in the span of other

columns
5: for i ∈ domains[I[1]] do
6: if M∗,i 6∈ 〈M∗,αj | j ∈ lds\I[1]〉 then
7: Remove i from domains[I[1]]

. no normalising element under current node that
sends ΩI[1] to Ωi by Lemma 5.3.6

8: end if
9: end for
10: end if
11: end for
12: return True, domains
13: end procedure

compareStabs See Algorithm 10. This uses Lemma 2.4.9 to prune our search tree.
As in Lemma 5.3.2, we find the orbit equivalence classes E and E′ over the sta-
bilisers. As in Part 1 of Lemma 5.3.7, we test whether there is a bijection between
the sizes of E and E′. If not, we backtrack. Otherwise, we refine the domain using
Lemma 4.1.1 by ensuring that orbits in a sized e equivalence class in E can only
map to orbits in a sized e equivalence class in E′. As in Part 2 of Lemma 5.3.7,
we can also compare the weight enumerator of the subspaces representing the sta-
bilisers. Since weight enumerator computation takes exponential time, we only do
this if the stabiliser is sufficiently small, using a simple heuristics.

5.5 Extension: Groups in class InP(D2p)

In this section, we shall consider H ∈ InP(D2p), where D2p is the dihedral group
of order 2p with odd prime degree p. We shall show that NSn(H) can be found by
computing the normalisers of two of its Sylow subgroups, which can be identified with
groups in classes InP(Cp) and InP(C2) respectively. This yields a faster algorithm to
compute the normalisers of such groups.

Notation 5.5.1. Let n = pk. Let Ω1,Ω2, . . . ,Ωk be disjoint sets such that Ω =

∪ki=1Ωi = {1, 2, . . . , n}. For 1 ≤ i ≤ k, let Di ≤ Sym(Ωi) be a permutation rep-
resentation of D2p and let Gi be the unique subgroup of Di isomorphic to Cp. Let
D = D1×D2× . . .×Dk ≤ Sn and G = G1×G2× . . .×Gk ≤ Sn. Let H be a subdirect
product of D.

The next two results describe some properties of the Sylow subgroups of H.

Lemma 5.5.2. Let Hp be a Sylow p-subgroup of H. Then

5.5. Extension: Groups in class InP(D2p) 103

Algorithm 10 compareStabs

1: procedure compareStabs(Mstab,MstabIm, [α1, α2, . . . , αd], domains)
2: Compute the ≡o-classes E1, E2, . . . , Ec of the columns of Mstab

. using Lemma 5.3.2
3: Compute the ≡o-classes E′1, E′2, . . . , E′c′ of the columns of MstabIm

. using Lemma 5.3.2
4: if multisets of class sizes are different then

. no normalising elements under the current node
by Lemma 5.3.7.1

5: return False, domains
6: end if
7: for i ∈ {1, 2, . . . , k}\{α1, α2, . . . , αd} do
8: Get Eu such that Ωi ∈ Eu
9: for j ∈ domains[i] do
10: Get E′u′ such that Ωj ∈ E′u′
11: if |Eu| 6= |E′u′ | then . no normalising elements mapping Ωi to Ωj by

Lemma 4.1.1
12: Remove j from domains[i]
13: end if
14: end for
15: end for
16: if (s− d) ∗ p ≤ 45 then . 45 is a heuristic
17: if WeightEnumerator(Mstab) 6= WeightEnumerator(MstabIm) then

. 〈γ−1(Mstab)〉, 〈γ−1(MstabIm)〉 are not conjugate
by Lemma 5.3.7.2

18: return False, domains
19: end if
20: end if
21: return True, domains . no obstruction to conjugacy found
22: end procedure

1. Hp = H ∩G E H, and so NSn(H) ≤ NSn(Hp).

2. Hp is a subdirect product of G, and so Hp ∈ InP(Cp).

Proof. Part 1: Since H ∩ G is a p-group, H ∩ G ≤ Hp. As G is the unique Sylow
p-subgroup of D, it follows that Hp ≤ G and so Hp ≤ H ∩G. From G E D, we deduce
that Hp E H. As H has a unique Sylow p-subgroup, Hp is characteristic in H. Hence
Hp / NSn(H), and so NSn(H) ≤ NSn(Hp).
Part 2: Certainly Hp ≤ G and so Hp|Ωi ≤ Gi for all 1 ≤ i ≤ k. Since Gi is cyclic, to
show that Hp|Ωi = Gi, it suffices to show that there exists t ∈ Hp such that t|Ωi 6= 1.
Since H is a subdirect product of D and Gi ≤ Di, there exists h ∈ H such that
1 6= h|Ωi ∈ Gi. We show that h2 ∈ Hp.
Since h|Ωi is a p-cycle, h2|Ωi 6= 1. For all j, the element h|Ωj of Dj is of order 1, 2 or p.
So h2|Ωj is of order 1 or p. Since Gj is the unique p-subgroup of Di, h2|Ωj ∈ Gj for all
j, so h2 ∈ G ∩H = Hp.

Lemma 5.5.3. Fix a Sylow 2-subgroup H2 of H. Then

104 Chapter 5: Normalisers of Groups In Class InP(Cp)

1. there exist αi ∈ Ωi for all 1 ≤ i ≤ k such that H2 = H(α1,α2,...,αk).

2. H = Hp oH2.

3. H2 is a subdirect product of (D1)(α1) × (D2)(α2) × . . .× (Dk)(αk).

Proof. Part 1: ≤: Suppose that there exist s1, s2 ∈ H2 such that s1|Ωi and s2|Ωi are
distinct and non-trivial. Then 〈s1|Ωi , s2|Ωi〉 = Di and so H2|Ωi = Di, a contradiction.
So there exists an involution ti ∈ Di such that 〈ti〉 ≥ H2|Ωi . Since every involution
in Di fixes a point, there exists αi ∈ Ωi such that ti fixes αi. Then H2|Ωi ≤ (Di)(αi).
Hence, H2 ≤ (D1)(α1) × (D2)(α2) × . . .× (Dk)(αk). As H2 ≤ H, the result follows.
≥: For 1 ≤ i ≤ k, the group (H(α1,α2,...,αk))|Ωi ≤ (Di)(αi), which is a 2-group. So
H(α1,α2,...,αk) is a 2-group and the result follows.
Part 2: By Part 1 of Lemma 5.5.2, Hp E H, so HpH2 ≤ H. From Hp ∩H2 = 1, we see
that

|HpH2| =
|Hp||H2|
|Hp ∩H2|

= |H|.

So H = HpH2 = Hp oH2. Part 3: Let 1 ≤ i ≤ k. Then by Part 1, H2|Ωi = (Di)(αi) or
H2|Ωi = 1. If H2 fixes Ωi, then by Part 2,

H|Ωi = (HpH2)|Ωi = Hp|ΩiH2|Ωi = Hp|Ωi = Gi,

which contradicts the fact that H is a subdirect product of D.

We will show, in Proposition 5.5.6, how we can compute NSn(H) using normalisers
of Sylow subgroups of H. We will be using the following lemma, which is also known
as Frattini argument.

Lemma 5.5.4. Let S be a normal subgroup of a group T and let U be a Sylow p-subgroup
of S. Then T = NT (U)S.

For the rest of the section, assume the following.

Notation 5.5.5. Let Hp and H2 be the Sylow p-subgroup and a Sylow 2-subgroup
of H respectively. For 2 ≤ i ≤ k, let φi : Ω1 → Ωi be a bijection witnessing
the permutation isomorphism from D1 to Di, and satisfying φi(α1) = αi, where αi
is stabilised by H2. Using Notation 2.1.11, let K = 〈φi | 2 ≤ i ≤ k〉. Let L =

〈NSym(Ω1)(G1), NSym(Ω2)(G2), . . . , NSym(Ωk)(Gk),K〉.
Fix an orbit Ω11 of H2|Ω1 . For each 2 ≤ i ≤ k, let Ωi1 := Ωφi

11 be a (H2|Ωi)-orbit. Let
Γ =

⋃k
i=1 Ωi1.

Proposition 5.5.6. Let H,Hp, H2 and L be as in Notation 5.5.5. Then NSn(H) =

(NL(Hp) ∩NL(H2))H ≤ L.

Proof. By Part 1 of Lemma 5.5.2, NSn(H) ≤ NSn(Hp), then by Proposition 4.3.10,
NSn(H) ≤ L, so it suffices to show that NSn(H) = (NL(Hp) ∩NL(H2))H.

5.5. Extension: Groups in class InP(D2p) 105

We first show that NSn(H) ≤ (NL(Hp)∩NL(H2))H. Taking S, T and U in Lemma 5.5.4
as H, NL(H) and H2 respectively,

NL(H) = NNL(H)(H2)H = (NL(H) ∩NL(H2))H.

It follows from Part 1 of Lemma 5.5.2 that NL(H) ≤ NL(Hp), which gives the result.
We now show that NSn(H) ≥ (NL(Hp) ∩ NL(H2))H. Certainly, H ≤ NSn(H). Let
ν ∈ NL(Hp) ∩ NL(H2) and let h ∈ H. By Part 2 of Lemma 5.5.3, there exist a ∈ Hp

and b ∈ H2 such that h = ab. Since ν ∈ NL(Hp), we have aν ∈ Hp. Similarly, bν ∈ H2

and so hν = aνbν ∈ HpH2 = H. Hence ν ∈ NSn(H).

Therefore, to compute NSn(H), we compute NL(Hp) ∩NL(H2). We will show how
we compute NL(Hp) ∩ NL(H2) in Lemma 5.5.9. Before that, we first give a group T

containing NL(Hp) ∩NL(H2).

Lemma 5.5.7. For 1 ≤ i ≤ k, let Ni = NSym(Ωi)(H2|Ωi)∩NSym(Ωi)(Hp|Ωi). Let K and
Γ be as in Notation 5.5.5, and let T := 〈N1, N2, . . . , Nk,K〉.

1. NL(Hp) ∩NL(H2) ≤ T and so NL(Hp) ∩NL(H2) = NT (H2) ∩NT (Hp).

2. Let r ∈ F∗p be primitive. For 1 ≤ i ≤ k, let gi ∈ Sym(Ωi) be a generator of Gi,
and let ci ∈ Sym(Ωi) with support Ωi\{αi} such that gcii = gri . Then Ni = 〈ci〉
and so T ∼= 〈c1〉 o Sk.

Proof. Part 1: Let l ∈ NL(Hp)∩NL(H2). Since L ∼= NSym(Ω1)(G1) oSk by Lemma 4.3.8,
there exists κ ∈ K such that lκ−1 fixes each Ωi setwise. Then (lκ−1)|Ωi ∈ Ni and so
l ∈ T .
Part 2: We first show that Ni〈ci〉. By Proposition 5.1.8, we have NSym(Ωi)(Gi) = 〈gi, ci〉,
so Ni ≤ 〈gi〉 o 〈ci〉. Assume that there exists gc ∈ 〈gi, ci〉 such that gc ∈ Ni with
1 6= g ∈ 〈gi〉 and c ∈ 〈ci〉. Since g moves αi and c only fixes αi, we have αgci 6= αi. Let
ri be the element generating H2|Ωi ∼= C2. Then r

gc
i = ri. So

(αgci)ri = (αgci)(rgci) = αrigci = αgci .

This yields a contradiction since ri only fixes one point αi. Therefore g = 1.
Next we show that Ni ≥ 〈ci〉. Certainly ci ∈ NSym(Ωi)(Gi). Let ri be the element
generating H2|Ωi . Since ri ∈ NSym(Ωi)(Gi) and ri fixes αi, we have ri ∈ 〈ci〉. So
rcii ∈ H2|Ωi and hence ci normalises H2|Ωi .
Lastly, the isomorphism follows from Lemma 4.3.8.

We have seen that H2 is a subdirect product of Ck2 , where for each 1 ≤ i ≤ k,
the projection H2|Ωi ∼= C2 is intransitive and has support Ωi\αi. Recall Γ from Nota-
tion 5.5.5. Then H2|Γ is in class InP(C2). So NSym(Γ)(H2|Γ) can be computed using
Algorithm 6. Next, we show how NT (H2) can be computed from NSym(Γ)(H2|Γ). Recall
that we take natural inclusion from Sym(Ωi) to Sn.

106 Chapter 5: Normalisers of Groups In Class InP(Cp)

Lemma 5.5.8. Let θ : NSym(Γ)(H2|Γ) → K be defined by Ω
θ(g)
i = Ωj if Ωg

i1 = Ωj1.
Then NT (H2) = 〈N1, N2, . . . , Nk, Im(θ)〉.

Proof. ≥: Observe that as |(H2|Ωi)| = 2, we have NSym(Ωi)(H2|Ωi) = CSym(Ωi)(H2|Ωi),
so Ni centralises H2. Therefore Ni ≤ NT (H2). To show that Im(θ) ⊆ NT (H2), let
g ∈ NSym(Γ)(H2|Γ) and let h ∈ H2. Then there exists h′ ∈ H such that (h|Γ)g = h′|Γ.
We will show that hθ(g) = h′.
Let 1 ≤ i ≤ k and let Ωj1 = Ωg

i1, so Ω
θ(g)
i = Ωj . If h|Ωi = 1 then (hθ(g))|Ωj =

(h|Ωi)θ(g) = 1. As h′|Ωj is an element of H2|Ωj ∼= C2 with h′|Ωj1 = (h|Ωi1)g = 1, it
follows that h′|Ωj = 1. So (hθ(g))|Ωj = h′|Ωj .
Suppose instead that h|Ωi 6= 1, so h′|Ωj is the non-trivial element of H2|Ωj . Since
θ(g) ∈ K, we can get a bijection witnessing the permutation isomorphism from H|Ωi
to H|Ωj using the restriction of θ(g) onto Ωi ∪ Ωj . As in the proof of the forward
implication of Proposition 1.1.7, it follows that (H|Ωi)θ(g) = H|Ωj . Since K permutes
the fixed points of H2, we have (H2|Ωi)θ(g) = H2|Ωj , so (h|Ωi)θ(g) is also the non-trivial
element of H2|Ωj . Hence (hθ(g))|Ωj = (h|Ωi)θ(g) = h′|Ωj .
Therefore hθ(g) = h′ ∈ H2 and hence θ(g) ∈ NSn(H2). Since θ(g) ∈ K ≤ T , we have
θ(g) ∈ NT (H2).
≤: Let t ∈ NT (H2) and let ι := θ(t|Γ) ∈ K ≤ T . Then as both NT (H2) and Im(θ)

permute the sets Ωi, it follows that Ωι
i = Ωj if and only if Ω

t|Γ
i1 = Ωj1 if and only if

Ωt
i = Ωj . Therefore tι−1 is an element of T which fixes each Ωi setwise. Then by Part 2 of

Lemma 5.5.7 , T ∼= 〈c1〉oSk, and so tι−1 ∈ 〈c1, c2, . . . , ck〉, which is 〈N1, N2, . . . , Nk〉.

Hence by letting R := 〈NSym(Ω1)(G1), NSym(Ω2)(G2), . . . , NSym(Ωk)(Gk), Im(θ)〉, we
have NT (H2) ≤ R. As in Theorem 5.2.22, we may compute NR(Hp) by considering
all κ ∈ Im(θ) ≤ K. Lastly, we show that NL(Hp) ∩ NL(H2) can be computed from
NR(Hp).

Lemma 5.5.9. Let W ≤ GLk(p) be as in Definition 5.1.9. Let Ξ : L → W be as in
Lemma 5.1.13. Let T be as in Lemma 5.5.7 and let Ξ|T : T → W be the restriction of
Ξ to T ≤ L. Then Ξ|T is an isomorphism and NL(Hp) ∩NL(H2) = Ξ|−1

T (Ξ(NR(Hp))).

Proof. It follows from Part 1 of Lemma 5.1.13 that Ξ|T is a homomorphism. Since
L = 〈T,G〉 and Ξ has kernel G by Part 3 of Lemma 5.1.13, it follows from Part 2 of
Lemma 5.5.7 that T ∩G = 1, so Ξ|T is an isomorphism.
≤: By Part 1 of Lemma 5.5.7 and Lemma 5.5.8, we have

NL(Hp) ∩NL(H2) = NT (H2) ∩NT (Hp) ≤ R ∩NT (Hp) ≤ R ∩NL(Hp) = NR(Hp),

since T,R ≤ L. So Ξ|T (NL(Hp) ∩NL(H2)) = Ξ(NL(Hp) ∩NL(H2)) ≤ Ξ(NR(Hp)).
≥: Let l ∈ NR(Hp). Then Ξ|−1

T (Ξ(l)) is an element of T normalising Hp. So it remains
to show that Ξ|−1

T (Ξ(l)) normalises H2.
By Lemma 5.5.8, R = 〈NT (H2), G〉. As Ker(Ξ) = G by Part 3 of Lemma 5.1.13, we

5.6. Results 107

have Ξ|T (NT (H2)) = Ξ(NT (H2)) = Ξ(R). So

Ξ|−1
T (Ξ(l)) ∈ Ξ|−1

T (Ξ(R)) = NT (H2).

Therefore, to compute the normaliser NSn(H) of H ≤ Sn in class InP(D2p), we do
as follows.

1. Compute the Sylow p-subgroup Hp of H and a Sylow 2-subgroup H2 of H.

2. Let Γ be as in Notation 5.5.5. Compute NSym(Γ)(H2|Γ) using Algorithm 6.

3. Let θ be as in Lemma 5.5.8 and let

R := 〈NSym(Ω1)(Hp|Ω1), NSym(Ω2)(Hp|Ω2), . . . , NSym(Ωk)(Hp|Ωk), Im(θ)〉.

Compute NR(Hp) using backtrack search (Algorithm 6).

4. Compute NL(Hp) ∩ NL(H2) as in Lemma 5.5.9. Then by Proposition 5.5.6,
NSn(H) = 〈NL(Hp) ∩NL(H2), H〉.

Note that by Proposition 2.1.18, Step 1 can be computed in polynomial time. Note
also that by Parts 8 and 9 of Theorem 2.1.9, Step 4 can be computed in polynomial
time.

5.6 Results

5.6.1 Normalisers of H ∈ InP(Cp)

We compare the performance of computing NSn(H) for H ≤ Sn in class InP(Cp), using
Algorithm 6 and using the GAP function Normalizer.

In our experiments we considered groups H ≤ Spk in class InP(Cp) as in Defini-
tion 5.1.2 that are isomorphic to Ck/2p , for p = 2, 3, 5, 7, 11. We generate these instances
by populating the entries of a k/2× k matrix with random elements of Fp. If the rank
of M is not k/2, we rerun the generation.

For each value of p and for each value of k, we create 10 instances of H and compute
NSn(H) using both the function in GAP2 and our new algorithm. Each computation
is run with a 10 minute time limit. We report the median, lower quartile and upper
quartile time (in seconds) to compute NSn(H) in Figure 5.1.

The results (Figure 5.1) show that the new algorithm performs faster than the one
implemented in GAP. We can also compute the normaliser of groups with a much higher

2There are some runtime gain by instead computing NL(H), where L ∼= (Cp o Cp−1) o Sk is as in
Proposition 5.1.8, or even by computing NJ(H) where J ∼= Sp oSk is a subgroup of Sn which permutes
the H-orbits. For simplicity, we compute NSn(H) in our experiments.

108 Chapter 5: Normalisers of Groups In Class InP(Cp)

●
●

●

●

●

timeout

10−2

10−1

100

101

102

103

30 60 90
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(a) p = 2

●

●

●

timeout

10−2

10−1

100

101

102

103

25 50 75 100 125
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(b) p = 3

●

●

timeout

10−2

10−1

100

101

102

103

40 80 120
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(c) p = 5

●

●

timeout

10−2

10−1

100

101

102

103

50 100 150
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(d) p = 7

timeout

10−2

10−1

100

101

102

103

100 200
n

m
ed

ia
n

lo
g

tim
e(

s)

New
GAP

(e) p = 11

Figure 5.1: Median log time (s) for computing normalisers of 10 random subdirect
product of Ckp , generated by k/2 random generators with 10 minutes timeout. The
lower and upper boundaries of the shaded area give the lower and upper quartiles
respectively.

5.6. Results 109

degree within the 10 minute limit. Many groups whose normalisers previously could
not be computed in 10 minutes can now be computed in less than 0.1s.

Next we compare the performance of computing NSn(H) for H ≤ Sn in class
InP(Cp) using the methods described in Proposition 5.2.3 and Theorem 5.2.22 re-
spectively.

The results are shown in Figure 5.2, where fullSearch refers to the algorithm
described in Section 3.3. To obtain complexity 2

O(n
p

log (n
p

)), limitDepth is a combina-
tion of methods of Proposition 5.2.3 and Theorem 5.2.22. The algorithm is as follows.
Let H ∈ InP(Cp) and let m = dim γ(H). As in Algorithm 6, we perform backtrack
search in K. At a node at depth m, we iterate over all (p− 1)m combination of (F∗p)

m,
as in Proposition 5.2.3. If we succeed in finding a normalising element g ∈ NSn(H),
we update N as 〈N, g〉, else we backtrack. Results (Figure 5.2) show that even though
fullSearch has a worse worst case complexity, it performs much better than limit-

Depth in practice, especially when p or m are large.

p m fullSearch limitDepth

5 4 0.11 0.125
5 6 0.4765 0.625
5 8 3.0625 2.953
5 10 8.2415 65.75

p m fullSearch limitDepth

2 6 0.125 0.125
3 6 0.2655 0.297
7 6 0.9605 12.0235
11 6 5.453 »600

Figure 5.2: Median times (in seconds) of computing NSn(H) of 10 random H ≤ S20p in
class InP(Cp) with 20 orbits and dim γ(H) = m, using limitDepth and fullSearch.

5.6.2 Normalisers of H ∈ InP(D2p)

Lastly we compare the performance of computingNSn(H) forH ≤ Sn in class InP(D2p),
using the methods described in Section 5.5 and using the GAP function Normalizer.

We consider H ≤ Spk in class InP(D2p) as in Notation 5.5.1, for p = 3, 5, 7, 11. By
Part 2 of Lemma 5.5.3, H is a product of a subdirect product of Ck2 and a subdirect
product of Ckp . We generate H by generating these subdirect products that are isomor-
phic to Ck/22 and Ck/2p respectively, using the method described in Section 5.6.1. The
rest of the experiment works the same as that in Section 5.6.1.

The results (Figure 5.3) show that the new algorithm generally performs better than
the one implemented in GAP, only slightly losing in small cases. As in Section 5.6.2,
we can now compute the normalisers of much bigger groups than we previously could.
Many groups whose normalisers could not previously be computed in 10 minutes can
now be computed in less than 0.1s. The algorithm is also very consistent, as the upper
and lower quartiles are very close to the median times.

110 Chapter 5: Normalisers of Groups In Class InP(Cp)

●

●

●

●

timeout

10−1

100

101

102

103

50 100 150
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(a) p = 3

●

●

●

●

timeout

10−1

100

101

102

103

100 200 300
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(b) p = 5

●

●

●

●

timeout

10−1

100

101

102

103

100 200 300 400
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(c) p = 7

timeout

10−1

100

101

102

103

200 400 600
n

m
ed

ia
n

lo
g

tim
e(

s)

New
GAP

(d) p = 11

Figure 5.3: Median log time (s) for computing normalisers of 10 random subdirect prod-
uct of Dk

2p, generated by k/2 random generators from Ck2 and k/2 random generators
of Ckp with 10 minutes timeout. The lower and upper boundaries of the shaded area
give the lower and upper quartiles respectively.

Chapter 6

Normalisers of Groups In Class
InP(T) for T Non-abelian Simple

Let T ≤ Sm be a transitive non-abelian simple group. In this chapter, we consider
H ≤ Sn for H ∈ InP(T). The main result of this chapter is to prove that the normaliser
NSn(H) can be computed in polynomial time. Recall from Chapter 2 that we measure
complexity in terms of n. So, the main theorem is:

Theorem 6.0.1. Let T ≤ Sm be transitive and non-abelian simple. Let H = 〈X〉 ≤ Sn
be in the class InP(T). Then NSn(H) can be computed in time polynomial in |X|n.

Since we are also interested in a practical algorithm, we will present an efficient
polynomial time algorithm to compute NSn(H) for H ∈ InP(T). Additionally, we
extend our result to give a fast algorithm to compute NSn(H) for H ∈ InP(Sm) where
5 ≤ m 6= 6.

The structure of the chapter is as follows. In Section 6.1, we present some polynomial
time results we shall use in later sections. In Section 6.2, we analyse the structure of H.
In Section 6.3, we prove Theorem 6.0.1. In Section 6.4, we further analyse the normaliser
NSn(H), which will give a better implemented algorithm for computing NSn(H). In
Section 6.5, we present an algorithm to compute NSn(H) using results in Section 6.4.
Let m be an integer such that 5 ≤ m 6= 6. In Section 6.6, we show that the normaliser
NSn(H) for H ≤ Sn in class InP(Sm) can be computed using the normalisers of two
subgroups in classes InP(Am) and InP(C2) respectively. In Section 6.7, we present the
runtimes of our algorithms against the existing implementation in GAP.

6.1 Polynomial time library

In this section, we present some polynomial-time results we will be using later in the
chapter.

We shall assume that all groups are given by their generating sets. By Theorem 2.1.1,
we further assume that the generating set of a group G ≤ Sm has size at most m. By

111

112 Chapter 6: Normalisers of Groups In Class InP(T)

Parts 4 to 6 of Theorem 2.1.9, we can check if a map defined on generators extends to
a homomorphism, isomorphism or automorphism in polynomial time. Hence, for the
rest of this chapter, all homomorphisms (including isomorphisms and automorphisms)
will be given by the images of a generating set of the domain group under the homo-
morphism.

We start with polynomial time simplicity test of permutation groups. Since the
abelian simple groups are regular cyclic groups and calculating the size of a permutation
group can be done in polynomial time (Part 1 of Theorem 2.1.9), we can also detect
non-abelian simple groups in polynomial time.

Lemma 6.1.1 ([BKL83, Theorem 5.1]). Let T = 〈X〉 ≤ Sm. Then in polynomial
time, we can decide if T is simple. Hence, in polynomial time, we can decide if T is
non-abelian simple.

Next, we give a polynomial bound on the size of the outer automorphism group of
a non-abelian simple group. Guralnick et al. give a stronger result in [GMP17], but the
following simplified version is sufficient for polynomial-time arguments.

Lemma 6.1.2 ([GMP17]). Let T be a non-abelian simple group with a non-trivial per-
mutation representation of degree m. Then |Out(T)| ≤ 2

√
m.

We will frequently assume that we have a library of standard copies of permuta-
tion representations of non-abelian simple groups. The library stores one permutation
representation for each simple group S.

Remark 6.1.3. For each group S in a library of standard copies of permutation repre-
sentations of non-abelian simple groups, we assume that the following information is
known:

1. a pair of elements g, h ∈ S such that S = 〈g, h〉,

2. the size |S|,

3. a right transversal R of Inn(S) in Aut(S), where each ω ∈ R is given by the
images of g and h under ω.

The following paraphrased theorem gives polynomial-time isomorphisms between
sufficiently large simple groups.

Lemma 6.1.4 ([Kan85, Theorem 9.1]). There exists a polynomial time algorithm which,
given a simple subgroup T ≤ Sm such that |T | > m8, computes a ‘natural’ representation
of T . Hence, assuming that we have a library of standard non-abelian simple groups as
described in Remark 6.1.3, we can construct an isomorphism between T and a standard
copy S in time polynomial in m.

For smaller simple groups T , we can construct an isomorphism between T and its
standard copy via the following lemma.

6.1. Polynomial time library 113

Lemma 6.1.5. Let T ≤ Sm be a non-abelian simple group such that |T | ≤ m8. Assume
that we have a library of standard copies of non-abelian simple groups, as described in
Remark 6.1.3. Then we can construct an isomorphism between T and a standard copy
S in time polynomial in m.

Proof. We first compute the order of T , which can be done in polynomial time (see
Part 1 of Theorem 2.1.9). By [Art55], all finite simple groups have distinct orders apart
from:

(a) A8
∼= PSL4(2) and PSL3(4), which have order 20160, and

(b) PΩ2n+1(q) and PSp2n(q) for each odd prime power q and all n ≥ 3.

So we can identify at most 2 candidates for S. It is well known that all simple groups
are 2-generated. For each candidate S, let s and t be the generators of the standard
copy of S.
For each pair g, h ∈ T , let φg,h : T → S be a map defined by g 7→ s and h 7→ t. Then
T ∼= S if and only if there exists g, h ∈ T such that φg,h is an isomorphism. That is,
there exists g, h ∈ T such that 〈g, h〉 = T and the map φg,h extends to a homomorphism.
We shall consider all pairs g, h ∈ T . We check the first assertion by checking if |〈g, h〉| =
|T |, which can be done in polynomial time, by Part 1 of Theorem 2.1.9. Since 〈g, h〉 ≤ T ,
this implies that 〈g, h〉 = T . By Part 4 of Theorem 2.1.9, deciding if φg,h extends to a
homomorphism can be decided in polynomial time.
Since we consider at most 2|T |2 maps and |T | ≤ m8, the algorithm runs in polynomial
time.

Hence, we can obtain an isomorphism between a given non-abelian simple group T
and a standard copy S in polynomial time. Therefore, given two non-abelian simple
groups T1 and T2, we can decide if T1

∼= T2 in polynomial time by checking if their
respective standard copies S1 and S2 are the same. Furthermore, if T1 and T2 are
isomorphic non-abelian simple groups, we can obtain an isomorphism φ : T1 → T2 in
polynomial time by first obtaining isomorphisms φ1 : T1 → S1 and φ2 : T2 → S2, and
then φ = φ1φ

−1
2 .

Corollary 6.1.6. Let T1 = 〈X〉 and T2 = 〈Y 〉 be non-abelian simple groups in Sn.
Then in polynomial time, we can decide if T1

∼= T2, and if they are, give an isomorphism
between them.

As discussed in Remark 6.1.3, we assume that the outer automorphisms Out(S) of
each group S in the library of standard non-abelian simple groups can be listed as a
set of coset representatives. For m ≥ 5 and m 6= 6, we have that Out(Am) = C2, and
Out(A6) = V4, the Klein four group. For the outer automorphisms of simple groups of
Lie type, see [Car72, Chapter 12]. For the outer automorphisms of the sporadic simple
groups, see [Lyo11].

114 Chapter 6: Normalisers of Groups In Class InP(T)

Lemma 6.1.7. Let T = 〈X〉 ≤ Sm be given. Suppose that we have constructed an
isomorphism between T and a standard copy S. Then a transversal R of Inn(T) in
Aut(T) can be obtained in polynomial time. Since R ⊆ Aut(T), each element α ∈ R of
the transversal is given by the images of the generating set X of T under α.

Recall from Lemma 2.1.19 that we can decide if a given isomorphism is induced by
conjugation in polynomial time. This is an important lemma for this chapter and will
be used repeatedly in different contexts throughout the chapter.

6.2 Structure of subdirect products of T k

Let T ≤ Sm be a transitive non-abelian simple group. In this section, we analyse the
structure of H ∈ InP(T). In particular, we show in Proposition 6.2.4 that H is a
disjoint direct product of subgroups isomorphic to T .

We start by fixing some notation.

Notation 6.2.1. Let Ω1,Ω2, . . . ,Ωk be the orbits ofH. Let Ω = ∪̇ki=1Ωi = {1, 2, . . . , n},
where n = mk.

Recall the notation from Corollary 1.4.4. Since eachH|Ωi ∼= T is simple, the Ni must
be either 1 or H|Ωi . We now prove a result we shall use in the proof of Proposition 6.2.4.
Recall the definition of projection maps in Notation 1.2.4, and recall that we denote
{1, 2, . . . , i} by i.

Lemma 6.2.2. Let Γ1,Γ2, . . . ,Γr be pairwise disjoint subsets of Ω such that Ω = ∪ri=1Γi.
For each 1 ≤ i ≤ r, let Ti be a subgroup of Sym(Ω) with support Γi such that Ti ∼= T . Let
A ≤ Sym(Ω) be the group A = T1T2 . . . Tr. Let N be a normal subgroup of A with index
|T |. Then there exists a unique 1 ≤ i ≤ k such that N is the kernel of the projection of
A onto Γi, and so N = T1T2 . . . Ti−1Ti+1Ti+2 . . . Tr.

Proof. Let 1 ≤ j ≤ k. Then Tj ∼= T is a minimal normal subgroup of A. By
Lemma 1.3.2, either Tj ≤ N or 〈Tj , N〉 = Tj × N . If the latter is true then 〈Tj , N〉
is a subgroup of A with size |T |r and so is the group A. Since Tj and N have trivial
intersection, they commute. So N = T1T2 . . . Tj−1Tj+1Tj+2 . . . Tr. We show that there
exists a unique 1 ≤ i ≤ k such that 〈Ti, N〉 = A.
For the proof of existence, aiming for a contradiction, suppose that there does not exist
1 ≤ i ≤ k such that 〈Ti, N〉 = A. Then for all 1 ≤ j ≤ k, we have Tj ≤ N . Then since
A = T1T2 . . . Tr, we have A ≤ N , which is a contradiction.
For the proof of uniqueness, suppose that that there exist distinct i and j such that
〈Ti, N〉 = A and 〈Tj , N〉 = A. By the observation in the opening paragraph, N =

T1T2 . . . Ti−1Ti+1Ti+2 . . . Tr and so Tj ≤ N . Then 〈Tj , N〉 = N 6= A, which is a contra-
diction.

6.2. Structure of subdirect products of T k 115

Next, we shall prove the main result of this section. To avoid confusing notation,
we will denote the direct product of groups by×. For disjoint sets Γ1 and Γ2, we shall
consider subgroups of Sym(Γ1)× Sym(Γ2) as subgroups of Sym(Γ1 ∪ Γ2).

Notation 6.2.3. Let ∆ ⊂ Ω be the union of some H-orbits. We denote by H|∆×1Ω\∆

the subgroup A of Sym(Ω) with support ∆ such that A|∆ = H|∆.

Proposition 6.2.4. Let T ≤ Sm be a transitive non-abelian simple group and let H ∈
InP(T). Then there exists a partition P := 〈C1 | C2 | . . . | Cr〉 of {1, 2, . . . , k} such
that by letting Γi = ∪j∈CiΩj for all 1 ≤ i ≤ r, we have

1. H|Γi ∼= T for all 1 ≤ i ≤ r, and

2. H = H|Γ1 × H|Γ2 × . . . × H|Γr , where the action of the direct product is on the
disjoint union of the supports of the direct factors, and so H ∼= T r.

Proof. We proceed by induction on k. If k = 1 then P = 〈1〉 and H = H|Γ1
∼= T ∼= T k.

Let ∆ be the set ∪k−1
i=1 Ωi. For the inductive step, let Pk−1 := 〈C1 | C2 | . . . | Cr〉 be the

partition of {1, 2, . . . , k − 1} and let Γi = ∪j∈CiΩj for all 1 ≤ i ≤ r be such that

H|Γi ∼= T for all 1 ≤ i ≤ r and H|∆ = H|Γ1 ×H|Γ2 × . . .×H|Γr ,

where we identify the direct product as the corresponding subgroup of Sym(∆). Observe
that for each 1 ≤ i ≤ r, the group H|Γi×1∆\Γi is a subgroup of H|∆. Using the notation
of Corollary 1.4.4, since Nk E H|Ωk ∼= T , either Nk = 1 or Nk = H|Ωk .
Suppose first that Nk = H|Ωk . Then by Part 1 of Corollary 1.4.6, H = H|∆ × Nk.
Then by letting Cr+1 = {k} and P := 〈C1 | C2 | . . . | Cr+1〉, conditions (1) and (2) are
satisfied.
Suppose now that Nk = 1 and take Rk = H|Ωk . Then by the first isomorphism theorem,

|Ker(θk−1)| = |(H|∆)|/|Im(θk−1)| = |T |r−1.

So Ker(θk−1) is a normal subgroup of H|∆ ∼= T r of index |T |. By Lemma 6.2.2, there
exists a unique 1 ≤ s ≤ r such that

Ker(θk−1) = ×
1≤j≤r, j 6=s

H|Γj × 1Γs = H|∆\Γs × 1Γs ,

and so θk−1

(
H|∆\Γs × 1Γs

)
= 1. Then by the definition of ϕk−1, we have

ϕk−1

(
H|∆\Γs × 1Γs

)
= H|∆\Γs × 1Γs∪Ωk .

Let S := 1∆\Γs × H|Γs . Since θk−1(H|∆) 6= 1 and H|∆ = H|∆\Γs × H|Γs , we have

116 Chapter 6: Normalisers of Groups In Class InP(T)

θk−1 (S) 6= 1. By the definition of ϕk−1, we have

ϕk−1 (S) = {h|∆θi(h|∆) | h|∆ ∈ S}

= {(h|∆h|Ωk) | h|∆ ∈ S}

= H|Γs∪Ωk × 1∆\Γs .

So, by Corollary 1.4.4, since Nk = 1, we have

H = ϕk−1 (H|∆) = ϕk−1

((
H|∆\Γs × 1Γs

)
(S)
)

= 〈ϕk−1

(
H|∆\Γs × 1Γs

)
, ϕk−1 (S)〉.

Since H|∆\Γs × 1Γs and S commute, their images under ϕk−1 also commute, so

H = (H|∆\Γs × 1Γs∪Ωk)(1∆\Γs ×H|Γs∪Ωk) =

(
×

1≤j≤r, j 6=s
H|Γj

)
×H|Γs∪Ωk ,

where we identify the direct product as a subgroup of Sym(Ω). Let P be the partition
of {1, 2, . . . , k} consisting of cell Cs ∪ {k} and all other cells Cj for all 1 ≤ j ≤ r such
that j 6= s. Then Condition (2) is satisfied. Clearly, H|Γj ∼= T for all 1 ≤ j ≤ r such
that j 6= s. By Corollary 1.4.4, the restriction of θk−1 to S is a homomorphism. Since
S ∼= T ∼= θk−1(S), it is an isomorphism. So, the restriction of ϕk−1 to S is also an
isomorphism. Then H|Γs∪Ωk = ϕk−1(S) ∼= T , and so condition (1) is also satisfied.

Before we prove the polynomial time result in Lemma 6.2.8, we highlight a few
corollaries of Proposition 6.2.4. We start by showing that each H|Γi is a diagonal
subgroup of T |Ci|.

Lemma 6.2.5. Suppose that H ∼= T . Then for each 2 ≤ i ≤ k, there exists an
isomorphism ψi : H|Ω1 → H|Ωi such that h|Ωi = ψi(h|Ω1) for all h ∈ H.
Therefore, for all h ∈ H, by considering the Sym(Ωi) as subgroups of Sym(Ω) via the
natural inclusion maps, we have h = h|Ω1

∏k
i=2 ψi(h|Ω1).

Proof. Let 1 ≤ i ≤ k. Then since H ∼= T ∼= H|Ωi , the projection map πi : H →
H|Ωi defined by h 7→ h|Ωi is an isomorphism. Let ψi : H|Ω1 → H|Ωi be defined by
ψi(h|Ω1) = πi(π

−1
1 (h|Ω1)) for all h ∈ H. Then ψi : H|Ω1 → H|Ωi is an isomorphism and

ψi(h|Ω1) = πi(h) = h|Ωi .

Notation 6.2.6. Let T be as in Notation 6.4.1. Denote by NSm(T) the subgroup of
Aut(T) induced by NSm(T).

Recall ≡o from Definition 2.1.10. The order of NSm(T) can be used to bound the
number of equivalence classes of ≡o.

6.3. Normalisers in polynomial time 117

Lemma 6.2.7. Let T ≤ Sm be a transitive and non-abelian simple group. Suppose that
|Aut(T)|/|NSm(T)| = t. Let U ∈ InP(T) such that U ∼= T . Then the U -orbits are
partitioned into at most t equivalence classes by ≡o.

Proof. For this proof, we will be writing maps on the right. Let Ω1,Ω2, . . . ,Ωk be
the orbits of U and let Γ = Supp(T) = {1, 2, . . . ,m}. We identify T and U |Ωi for
all 1 ≤ i ≤ k as a subgroups Sym(Γ ∪ Ωi). By Proposition 1.1.7, for all 1 ≤ i ≤ k,
there exists di ∈ Sym(Γ ∪ Ωi) such that T di = U |Ωi . By Lemma 6.2.5, there exist
ψi : U |Ω1 → U |Ωk for all 2 ≤ i ≤ k such that for all u ∈ U , we have u|Ωi = (u|Ω1)ψi.
Then for all 1 ≤ i ≤ k, the map βi defined by τ 7→ ((τdi)ψ−1

i)d
−1
1 is an automorphism

of T . Let 1 ≤ i, j ≤ k. We show that if βiNSm(T) = βjNSm(T), then Ωi ≡o Ωj , from
which the result shall follow.
We have βiβ−1

j ∈ NSm(T) and so τ 7→ τβiβ
−1
j = ((τdi)ψ−1

i ψj)
d−1
j is induced by conju-

gation in Sm. Then ψ−1
i ψj is an isomorphism induced by conjugation in Sym(Ωi ∪Ωj)

such that (u|Ωi)ψ
−1
i ψj = u|Ωj for all u ∈ U . By Lemma 2.1.12, Ωi ≡o Ωj .

Lastly, we show that the decomposition in Proposition 6.2.4 can be computed in
polynomial time.

Lemma 6.2.8. Let H = 〈X〉 ≤ Sn. Assume that H is known to be in the class InP(T)

for some non-abelian simple group T . Then in polynomial time, we can compute P
satisfying the conditions in Proposition 6.2.4.

Proof. In this proof, we will identify the direct product of groups with disjoint supports
to be a subgroup in the symmetric group over the disjoint unions of the supports of the
direct factors. Let P = 〈C1 | C2 | . . . | Cr〉. As in Proposition 6.2.4, for all 1 ≤ i ≤ r,
let Γi = ∪j∈CiΩj . We shall show that H = H|Γ1 × H|Γ2 × . . . × H|Γr is the finest
disjoint direct product decomposition of H, from which the result shall follow from
Theorem 3.0.2.
Since the H|Γi have disjoint supports, H = H|Γ1 ×H|Γ2 × . . .×H|Γr is a disjoint direct
product of H. To show that it is the finest decomposition, aiming for a contradiction,
suppose that there exists 1 ≤ i ≤ r such that H|Γi is d.d.p. decomposable. Then there
exists a non-trivial subset ∆ ⊂ Γi such that H|Γi = H|∆ ×H|Γi\∆. Then H|∆ × 1 is a
non-trivial normal subgroup of H|Γi . Since H|Γi ∼= T is simple, this is a contradiction.

6.3 Normalisers in polynomial time

The main objective of this section is to show that the normaliser NSn(H) of H ≤
Sn for H ∈ InP(T) can be computed in polynomial time. We shall also show in
Proposition 6.3.6 that in polynomial time, we can decide if a given permutation group
is in the class InP(T).

118 Chapter 6: Normalisers of Groups In Class InP(T)

Let U ≤ St be non-abelian simple, that is not necessarily transitive. We start by
showing that NSt(U) can be computed in time polynomial in t [LM11]. Since the proof
of the result is short, we will include it here.

Proposition 6.3.1 ([LM11]). Let U = 〈X〉 ≤ St be a non-abelian simple group. As
in Lemma 6.1.7, assume that a transversal R of Inn(U) in Aut(U) is known, where
each element of R is defined by the images of X. Then NSt(U) can be computed in
polynomial time in t.

Proof. Initialise Y as the empty set. For each ω ∈ R, by Lemma 2.1.19, in polynomial
time, we can decide if there exists xω ∈ St such that uω = x−1

ω uxω for all u ∈ U , and
exhibit one such xω if it exists. If such a xω exists, put in Y one such xω. This procedure
is in polynomial time since by Lemma 6.1.2, |R| is polynomially bounded.
Then by Lemma 1.3.9, NSt(U) = 〈CSt(U), U, Y 〉. By Theorem 2.1.16, CSt(U) can be
computed in polynomial time, hence the result follows.

Indeed, for A ≤ St with a polynomial bound on |Out(A)|, assuming that we have a
transversal of Inn(A) in Aut(A), the normaliser NSt(A) can be computed in polynomial
time.

Now, let Λ1 and Λ2 be disjoint sets. Let U1 and U2 be subgroups of Sym(Λ1∪̇Λ2)

isomorphic to a non-abelian simple group T . Let Λ1 and Λ2 be supports of U1 and
U2 respectively. We shall show that, in polynomial time, we can decide if U1 and U2

are conjugate in Sym(Λ1∪Λ2). Recall from Corollary 6.1.6 that we can construct an
isomorphism φ : U1 → U2 in polynomial time. We shall show that we can decide if U1

and U2 are conjugate in Sym(Λ1 ∪Λ2) by considering polynomialy many isomorphisms
between U1 and U2.

Notation 6.3.2. Let A and B be groups and let φ : A → B be an isomorphism. For
α ∈ Aut(A), let φα : A → B be the isomorphism defined by φα(a) = φ(aα) for all
a ∈ A.

Lemma 6.3.3. Let Λ1 and Λ2 be disjoint sets. Let A = 〈X〉 and B = 〈Y 〉 be subgroups
of Sym(Λ1∪Λ2) with supports Λ1 and Λ2 respectively. Let φ : A→ B be an isomorphism.
Let R be a transversal of Inn(A) in Aut(A), where each element of R is defined by the
images of X. If A and B are conjugate in Sym(Λ1 ∪ Λ2), then there exists ω ∈ R such
that φω is induced by conjugation in Sym(Λ1 ∪ Λ2).

Proof. Assume that A and B are conjugate in Sym(Λ1 ∪Λ2) and let c ∈ Sym(Λ1 ∪Λ2)

be such that Ac = B. Let α ∈ Aut(A) be defined by gα = φ−1(gc) for all g ∈ A. So,
there exist ι ∈ Inn(A) and ω ∈ R such that α = ωι. We shall show that φω is induced
by conjugation in Sym(Λ1 ∪ Λ2).
Let g ∈ A. Then φω(g) = φ(gω) = φ(gαι

−1
). Since ι−1 ∈ Inn(A), there exists g′ ∈ A

such that (gα)ι
−1

= (gα)g
′ . Then

φω(g) = φ(gαι
−1

) = φ((gα)g
′
) = φ(gα)φ(g′) = φ(φ−1(gc))φ(g′) = gcφ(g′).

6.3. Normalisers in polynomial time 119

So φω is induced by the conjugation of cφ(g′) ∈ Sym(Λ1 ∪ Λ2).

Proposition 6.3.4. Let Λ1 and Λ2 be disjoint sets. Let U1 = 〈X〉 and U2 = 〈Y 〉 be
subgroups of Sym(Λ1∪Λ2) with supports Λ1 and Λ2 respectively. Let T be a non-abelian
simple group. Assume that we have an isomorphism ψ1 : U1 → T , defined by the images
of each x ∈ X. Assume further that we have a transversal R of Inn(U1) in Aut(U1),
where each ω ∈ R is defined by the images of each x ∈ X. Then in time polynomial in
|Λ1∪Λ2|, we can decide if there exists c ∈ Sym(Λ1∪Λ2) such that U c1 = U2, and if such
a c exists, output c.

Proof. By Corollary 6.1.6, in polynomial time, we can construct an isomorphism φ :

U1 → U2. For each ω ∈ R, using Lemma 2.1.19, we decide (and exhibit, if possible) if
there exists c ∈ Sym(Λ1∪Λ2) such that φω is induced by the conjugation of c. If none of
the φω is induced by a conjugation, then by Lemma 6.3.3, U1 and U2 are not conjugate
in Sym(Λ1 ∪ Λ2). Otherwise, we find c ∈ Sym(Λ1 ∪ Λ2) such that U c1 = φω(U1) = U2.
Then the polynomial time result follows from Lemmas 2.1.19 and 6.1.2.

Finally, we shall show that given H = 〈X〉 ≤ Sn, in polynomial time, we can

1. decide if H ∈ InP(T) for some transitive non-abelian simple group T , and

2. if it is, compute NSn(H).

We shall start with the first assertion. A useful corollary of Proposition 6.3.4 is that
we can decide if two non-abelian simple groups are permutation isomorphic, and hence
deciding if H ∈ InP(T) can be done in polynomial time.

Lemma 6.3.5. Let A = 〈X〉 ≤ Sm and B = 〈Y 〉 ≤ Sm be non-abelian simple. Assume
that we have a library of standard copies of non-abelian simple groups, as described in
Remark 6.1.3. Then in polynomial time, we can decide if A is permutation isomorphic
to B, and if they are, output c ∈ Sm such that Ac = B.

Proof. By Corollary 6.1.6, in polynomial time, we can construct isomorphisms φ1 and
φ2 from A and B respectively to their respective standard copy S and S′. If S = S′,
then A ∼= B, and φ1φ

−1
2 is an isomorphism between A and B. By Proposition 1.1.7, A

is permutation isomorphic to B if and only if A and B are conjugate in Sm. Then the
result follows from Proposition 6.3.4.

Proposition 6.3.6. Let H = 〈X〉 ≤ Sn. Then in polynomial time, we can decide if
there exists a transitive non-abelian simple group S ≤ Sym(Ω1) such that H ∈ InP(S),
and if so, output S.

Proof. First, we compute the orbits Ω1,Ω2, . . . ,Ωk of H, which can be done in polyno-
mial time by Proposition 2.1.2. Then there exists a transitive non-abelian simple group
S such that H ∈ InP(S) if and only if H|Ω1 is non-abelian simple and for all 1 ≤ i ≤ k,
we have H|Ωi is permutation isomorphic to H|Ω1 .

120 Chapter 6: Normalisers of Groups In Class InP(T)

The H|Ωi can be computed in polynomial time. By Lemma 6.1.1, we can check if H|Ω1

is non-abelian simple in polynomial time. Let 2 ≤ i ≤ k. Then by embedding H|Ω1

and H|Ωi in Sym(Ω1 ∪ Ωi) in the most natural way and Lemma 6.3.5, we can decide if
H|Ω1 is permutation isomorphic to H|Ωi in polynomial time. Since we consider at most
k − 1 ≤ n pairs of groups, the result follows.

Now, we return to H ∈ InP(T) for a transitive non-abelian simple group T ≤ Sm

and prove the main theorem of this chapter.

Theorem 6.3.7. Let H = 〈X〉 ≤ Sn be such that H ∈ InP(T) for some transitive
non-abelian simple group T . Then NSn(H) can be computed in polynomial time.

Proof. By Proposition 6.3.6, in polynomial time, we can find the transitive non-abelian
simple group T such that H ∈ InP(T).
To compute NSn(H), we first compute a partition P = 〈C1 | C2 | . . . | Cr〉 as in
Proposition 6.2.4. By Lemma 6.2.8, this partition can be computed in polynomial time.
For each 1 ≤ i ≤ r, let Γi = ∪j∈CiΩj . So now we have H = H|Γ1 ×H|Γ2 × . . .×H|Γr ,
where we identify the direct product with the corresponding subgroup in the symmetric
group over the disjoint union of the supports of the direct factors. By Proposition 4.2.6,
NSn(H) can be computed by computing the NSym(Γi)(H|Γi) for all 1 ≤ i ≤ r and the
cij ∈ Sym(Γi ∪ Γj) such that (H|Γi)cij = H|Γj for all 1 ≤ i, j ≤ k such that i 6= j, if
such cij exists.
Let 1 ≤ i ≤ r. By Proposition 6.3.1, since H|Γi is non-abelian simple, NSym(Γi)(H|Γi)
can be computed time polynomial in |Γi|. Since |Γi| ≤ n and r ≤ k < n, the normalisers
NSym(Γi)(H|Γi) for all 1 ≤ i ≤ r can be computed in polynomial time.
Let 1 ≤ i, j ≤ r such that i 6= j. By Proposition 6.3.4, in time polynomial in |Γi ∪ Γj |,
we can decide if there exists cij ∈ Sym(Γi ∪Γj) such that (H|Γi)cij = H|Γj , and output
cij if it exists. Since |Γi ∪Γj | ≤ n and we consider r2 pairs of orbits, all such cij can be
computed in polynomial time.

Hence, complexity-wise, the normaliser NSn(H) of H ≤ Sn where H ∈ InP(T) for
some transitive non-abelian simple group T can be computed in polynomial time. Next,
we will focus on obtaining a polynomial time algorithm for computing NSn(H) which
runs efficiently in practice.

6.4 Isomorphisms induced by conjugations

In this section, we give an alternative way of deciding if an isomorphism φ between
non-abelian simple groups Hi and Hj with supports ∆i and ∆j respectively is induced
by conjugation in Sym(∆i ∪∆j). We need not assume that ∆i and ∆j are disjoint or
that Hi 6= Hj . Note that here we are considering a special case of Lemma 2.1.19, where
the domain and the image of the isomorphism are non-abelian simple. The focus of this

6.4. Isomorphisms induced by conjugations 121

section will not be on the complexity, but instead, we aim to build the mathematical
framework for the implemented algorithm which we shall describe in Section 6.5.

For the rest of the section, we shall adopt the following notation and assumptions.

Notation 6.4.1. Let Γ = {1, 2, . . . ,m}, and let T ≤ Sym(Γ). Let H ≤ Sym(Ω) be a
group in InP(T).
Let H = H1 ×H2 × . . .×Hr be the finest disjoint direct product decomposition of H.
For all 1 ≤ i ≤ r, let ∆i = Supp(Hi), and so Ω = ∪̇ri=1∆i.
Further assume the Hi have the same number of orbits s, and let {∆i1,∆i2, . . . ,∆is}
be the orbits of Hi for each 1 ≤ i ≤ r.
For all 1 ≤ a ≤ s, let Hia denote H|∆ia , and for all hi ∈ Hi, let hia denote hi|∆ia .

We will be writing maps on the right. We will also be taking the natural inclusion
map of Sym(I) into Sym(J) for all subsets I ⊂ J . Our goal is to decide if a given
isomorphism φ : Hi → Hj is induced by conjugation in Sym(∆i ∪∆j) and exhibit an
element giving rise to such conjugation, should it exist.

When computing the normalisers NSn(H) using Theorem 6.3.7, we find that the
slowest part is determining if an isomorphism φ : Hi → Hj is induced by conjugation in
Sym(∆i ∪∆j). Determining this using the procedure described in Lemma 2.1.19 gives
time polynomial in 2sm. In this section, we see how we can improve this. We require
some preprocessing consisting of polynomially many applications of Lemma 2.1.19 for
isomorphism between groups of degree m, which has time polynomial in 2m. However,
as we will see in Table 6.2, this gives significant improvement in terms of computation
time, where the speedups are more evident as s gets larger.

The improvement made is by first testing if the given isomorphism is induced by
conjugation using Proposition 6.4.3. For each 1 ≤ i ≤ r and 1 ≤ a ≤ s, we will
associate the Hi-orbit ∆ia with an automorphism ωia of T . We will also associate the
isomorphism φ with an automorphism β of T . We will see how we use these ωia and β
to decide if φ is induced by conjugation in Proposition 6.4.3. First, we define and give
certain properties of the ωia and β.

Lemma 6.4.2. Let 1 ≤ i, j ≤ r and φ : Hi → Hj be an isomorphism. For all 1 ≤ a ≤ s,
let dia ∈ Sym(Γ ∪∆ia) such that T dia = Hia, and let δia : T → Hia be the isomorphism
induced by the conjugation of dia. For all 1 ≤ a ≤ s, let ψia : Hi1 → Hia be the
isomorphism defined by hia = (hi1)ψia for all hi ∈ Hi, and let φa : Hia → Hja be the
isomorphism defined by (hia)φa = ((hi)φ)|∆ja for all hi ∈ Hi.

1. Let ωi1 = 1 ∈ Aut(T) and let ωia := δi1ψiaδ
−1
ia ∈ Aut(T) for all 2 ≤ a ≤ s. Then

for all hi ∈ Hi, we have hia = (hi1)δ−1
i1 ωiaδia.

2. Let β := δi1φ1δ
−1
j1 ∈ Aut(T). Then for all 1 ≤ a ≤ s and hi ∈ Hi, we have

122 Chapter 6: Normalisers of Groups In Class InP(T)

(hia)φa = (hi1)δ−1
i1 βωjaδja, and so

(hi)φ =
k∏
a=1

(hi1)δ−1
i1 βωjaδja.

Proof. Part 1: Let hi ∈ Hi. Then (hi1)δ−1
i1 ωiaδia = (hi1)ψia = hia.

Part 2: Let hi ∈ Hi. If a = 1, then, since ωj1 = 1, we have

(hi1)δ−1
i1 βωjaδja = (hi1)δ−1

i1 (δi1φ1δ
−1
ja)1δja = (hi1)φ1.

Suppose now that a 6= 1. Let hj = (hi)φ ∈ Hj , so (hia)φa = hja. Then

(hi1)δ−1
i1 βωjaδja = (hi1)δ−1

i1 (δi1φ1δ
−1
j1)ωjaδja = (hi1)φ1δ

−1
j1 ωjaδja = (hj1)δ−1

j1 ωjaδja.

By Part 1, (hj1)δ−1
j1 ωjaδja = hja. The last assertion follows from the observation that

(hi)φ =
∏k
a=1(hia)φa.

Recall NSm(T) from Notation 6.2.6. We will decide if φ is induced by conjugation
by comparing certain cosets of NSm(T) in Aut(T), where the coset representatives are
constructed from the ωla and β defined in Lemma 6.4.2.

Proposition 6.4.3. Let 1 ≤ i, j ≤ r, and let Hi and Hj be as in Notation 6.4.1. Let
φ : Hi → Hj be an isomorphism. Let β and ωla for all 1 ≤ l ≤ r and 1 ≤ a ≤ s be as
in Lemma 6.4.2. Then φ is induced by a conjugation in Sym(∆i ∪∆j) if and only if,
as multisets,

{ωiaNSm(T) | 1 ≤ a ≤ s} = {βωjaNSm(T) | 1 ≤ a ≤ s}.

Furthermore, if φ is induced by a conjugation of g ∈ Sym(∆i ∪∆j), then g maps Ωia to
Ωjb only if ωiaNSm(T) = βωjbNSm(T).

Proof. Let Λ be a set of size |∆j | disjoint from ∆j , and let d ∈ Sym(∆j ∪ Λ) be an
involution such that ∆d

j = Λ. Consider A := {hi((hi)φ)d | hi ∈ Hi}, which has orbits
{∆ia | 1 ≤ a ≤ s}∪{∆d

ja | 1 ≤ a ≤ s}. By Lemma 2.1.19, φ is induced by a conjugation
in Sym(∆i ∪∆j) if and only if there exists a bijection γ : {∆ia | 1 ≤ a ≤ s} → {∆d

ja |
1 ≤ a ≤ s} such that for all 1 ≤ a ≤ s, the A-orbits ∆ia and (∆ia)γ are equivalent. We
show that A-orbits ∆ia and ∆d

jb are equivalent if and only if ωiaNSm(T) = βwjbNSm(T),
from which the result follows.
⇒: Let δla for all 1 ≤ l ≤ r and 1 ≤ a ≤ s be as in Lemma 6.4.2. Let t ∈ T . Since
(T)δia = Hi|∆i1 , there exists hi ∈ Hi such that hi1 = (t)δi1. Let hj := (hi)φ ∈ Hj ,
so hihdj is an element of A. By the forward implication of Lemma 2.1.12, there exists
g ∈ Sym(∆ia ∪∆d

jb) such that hiag = hdjb. By Part 1 of Lemma 6.4.2,

hia
g = ((hi1)δ−1

i1 ωiaδia)
g = ((t)ωiaδia)

g,

6.4. Isomorphisms induced by conjugations 123

and since hjb = (hib)φb, using Part 2 of Lemma 6.4.2,

hdjb = ((hi1)δ−1
i1 βωjbδjb)

d = ((t)βωjbδjb)
d.

So (t)ωia and (t)βωjb are conjugate in Sym(Γ). Hence ωiaNSm(T) = βwjbNSm(T).
⇐: We shall show that ∆ia ≡o ∆d

jb using the backward implication of Lemma 2.1.12.
Let ν ∈ NSm(T). Since ωiaNSm(T) = βωjbNSm(T), there exists ν ′ ∈ NSm(T) such
that ωiaν = βωjbν

′. Consider the isomorphism δ−1
ia νν

′−1δjb from Hia to Hjb. Then
there exists c ∈ Sym(∆ia ∪ ∆jb) inducing the isomorphism δ−1

ia νν
′−1δjb. Let g be the

involution in Sym(∆ia ∪ ∆jb) such that δg = δc for all δ ∈ ∆ia. We will show that
for all hi ∈ Hi and hj := (hi)φ ∈ Hj , we have (hia)

gd = hjb
d. Since hihdj ∈ A, by

Lemma 2.1.12, ∆ia ≡o ∆d
jb.

Let hi ∈ Hi and hj := (hi)φ ∈ Hj . Then

(hia)δ
−1
ia νν

′−1δjb = (hi1)δ−1
i1 ωiaδiaδ

−1
ia νν

′−1δjb by Part 1 of Lemma 6.4.2

= (hi1)δ−1
i1 ωiaνν

′−1δjb

= (hi1)δ−1
i1 βωjbδjb since ωiaν = βωjbν

′

= hjb by Part 2 of Lemma 6.4.2.

Therefore hiagd = hjb
d.

Lastly, we give corollaries for the cases when |Aut(T) : NSm(T)| ≤ 2, which can be
used to create faster algorithms, as we do not need to compare of cosets of NSm(T) in
Aut(T), as in Proposition 6.4.3.

Corollary 6.4.4. Suppose that Aut(T) = NSm(T). Let U,U ′ ∈ InP(T) such that
U ∼= U ′ ∼= T . Then U and U ′ are conjugate in Sym(Supp(U) ∪ Supp(U ′)) if and only
if the number of orbits of U is equal to the number of orbits of U ′.

Proof. By Lemma 6.2.7, all orbits of U are equivalent. Similarly, all orbits of U ′ are
equivalent. The result then follows from Proposition 6.4.3.

Corollary 6.4.5. Suppose that |Aut(T) : NSm(T)| ≤ 2. Let U,U ′ ∈ InP(T) such
that U1

∼= U2
∼= T . Then all isomorphisms φ : U → U ′ are induced by conjugation in

Sym(Supp(U1) ∪ Supp(U2)) if and only if one of the following holds:

1. U and U ′ have the same number of orbits, all of which are equivalent.

2. Each of U and U ′ has two equivalence classes under ≡o, where all the classes have
the same size.

Proof. ⇐: If Part 1 holds, then the result follows from Proposition 6.4.3. Suppose now
that Part 2 holds. Since Aut(T)/NSm(T) forms a group, β ∈ Aut(T) permutes the
cosets of NSm(T) in Aut(T). So the results follows from Proposition 6.4.3.
⇒: By Lemma 6.2.7, each of U and U ′ has at most two equivalence classes under ≡o.

124 Chapter 6: Normalisers of Groups In Class InP(T)

Since β ∈ Aut(T) either fixes or swaps the cosets of NSm(T), the sizes of the equivalence
classes under ≡o of U and U ′ must be the same.

6.5 Algorithm

In this section, we present an algorithm for computing the normaliser NSn(H) for H ≤
Sn where H is in class InP(T). We show that Algorithm 11 computes the normaliser
NSn(H) and runs in polynomial time. In Section 6.7, we will show its performance in
practice.

Algorithm 11 uses the procedure in Algorithm 12. We first show that the procedure is
correct and runs in polynomial time. Note that Algorithm 12 is an alternative algorithm
of the procedure described in Lemma 2.1.19 to decide if an isomorphism between non-
abelian simple groups is induced by conjugation, and uses results in Section 6.4.

Lemma 6.5.1. Algorithm 12 is correct and runs in polynomial time.

Proof. Let φ : Hi → Hj be an isomorphism. Let S be a left transversal of NSm(T)

in Aut(T) and let the ωla be as in Lemma 6.4.2. We first prove the correctness of the
algorithm. Since conjugation preserves orbits, if the condition in line 2 holds, then φ
is not induced by conjugation. Suppose otherwise. Then by Proposition 6.4.3, φ is
induced by conjugation in Sym(Supp(Hi) ∪ Supp(Hj)) if and only if Si = Sj . So the
algorithm is correct.
For the complexity result, by Proposition 2.1.2, the orbit structure of a group can be
computed in polynomial time. By Lemma 2.1.19, line 11 can be computed in polynomial
time. It remains to show that Si and Sj can be computed in polynomial time.
We shall show that given ω ∈ Aut(T), we can find σ ∈ S such that σNSm(T) = ωNSm(T)

in polynomial time. We do so by considering all σ ∈ S and checking if σ−1ω ∈ NSm(T).
That is, we check if the automorphism σ−1ω is induced by conjugation in Sm. By
Lemma 2.1.19, this can be decided in polynomial time. Since |Aut(T)|/|NSm(T)| =

|Out(T)| ≤ |S|, the size of S is polynomial in m. So we consider at most polynomially
many σ ∈ S and hence this procedure runs in polynomial time.

Before we show that Algorithm 11 is correct and runs in polynomial time, we first
show that a left transversal of NSm(T) in Aut(T) can be computed in polynomial time.
By Corollary 6.1.6 and Lemma 6.1.7, a transversal of Inn(T) in Aut(T) can be obtained
in polynomial time.

Lemma 6.5.2. Let T = 〈X〉 ≤ Sm. Let R be a right transversal of Inn(T) in Aut(T),
where each element of R is defined by the images of X. Given X and R, in polynomial
time, we can compute a left transversal S of NSm(T) in Aut(T), where each element of
S is defined by the images of X.

Proof. Note that R−1 := {ω−1 | ω ∈ R} forms a left transversal of Inn(T) in Aut(T).
Initialise S as the empty set {}. We compute S by considering all ω ∈ R−1, and add ω

6.5. Algorithm 125

Algorithm 11 Computing the normaliser NSn(H) for H ∈ InP(T)

Input: A generating set X of H ≤ Sn such that H ∈ InP(T).
Output: NSn(H).
1: Find a non-abelian simple group T such that H ∈ InP(T)

. using Proposition 6.3.6
2: RT ← right transversal of Inn(T) in Aut(T) . see Lemma 6.1.7
3: S ← left transversal of NSm(T) in Aut(T) . as in Lemma 6.5.2
4: Compute the Hi such that H = H1 × H2 × . . . × Hr is the finest disjoint direct

product decomposition of H . so each Hi
∼= T

5: For 1 ≤ i ≤ r, let {∆i1,∆i2, . . . ,∆isi} be the orbits of Hi

6: For all 1 ≤ i ≤ r and 1 ≤ a ≤ si, find dia s.t. T dia = H|∆ia . as in Lemma 6.3.5
7: For all 1 ≤ i ≤ r and 1 ≤ a ≤ si, let δia and ωia be as in Lemma 6.4.2
8: Compute CSn(H) as in Theorem 2.1.16
9: Initialise N = 〈H,CSn(H)〉
10: for 1 ≤ i ≤ r do
11: for i ≤ j ≤ r do
12: if i 6= j then
13: Find an isomorphism φ : Hi → Hj . using Corollary 6.1.6
14: else
15: Let φ : Hi → Hj be the identity map
16: end if
17: R← transversal of Inn(Hi) in Aut(Hi) . see Lemma 6.1.7
18: for ω ∈ R do
19: Define isomorphism φω : Hi → Hj by hi 7→ φ(hωi)
20: if IsConjugatorIsom(φω, S, {ωia}1≤a≤si , {ωja}1≤a≤sj) 6= FAIL then
21: if i 6= j then
22: g ← IsConjugatorIsom(φω, S, {ωia}1≤a≤si , {ωja}1≤a≤sj)
23: c← involution in Sn with support Supp(Hi)∪Supp(Hj) such that

δc = δg for all δ ∈ ∆i

24: N ← 〈N, c〉
25: break . Only one conjugating element needed
26: else
27: N ← 〈N, IsConjugatorIsom(φω)〉
28: end if
29: end if
30: end for
31: end for
32: end for
33: return N

126 Chapter 6: Normalisers of Groups In Class InP(T)

Algorithm 12 Determine if a given isomorphism is induced by a conjugation
Input: Isomorphism φ : Hi → Hj , defined by the images of the generators of Hi; left
transversal S of NSm(T) in Aut(T); the ωla as in Lemma 6.4.2.
Output: If φ is not induced by conjugation in Sym(Supp(Hi) ∪ Supp(Hj)), outputs
Fail; Otherwise, outputs g ∈ Sym(Supp(Hi) ∪ Supp(Hj)) such that φ(hi) = hgi for all
hi ∈ Hi.
1: procedure IsConjugatorIsom(φ, S, {ωia}1≤a≤si , {ωja}1≤a≤sj)
2: if number of orbits of Hi 6= number of orbits of Hj then
3: return Fail
4: else
5: Let β ∈ Aut(T) be as in Lemma 6.4.2
6: Si ← multiset {σa ∈ S s.t. σaNSm(T) = ωiaNSm(T) | 1 ≤ a ≤ si}
7: Sj ← multiset {σa ∈ S s.t. σaNSm(T) = βωjaNSm(T) | 1 ≤ a ≤ sj}
8: if multisets Si 6= Sj then
9: return Fail . φ not induced by conjugation by Proposition 6.4.3
10: else
11: Find g ∈ Sn with support Supp(Hi) ∪ Supp(Hj) inducing φ

. using Lemma 2.1.19
12: return g
13: end if
14: end if
15: end procedure

to S if there does not exists σ ∈ S such that σNSm(T) = ωNSm(T). To check that, we
check if ω−1σ ∈ NSm(T). That is, we check if ω−1σ is induced by conjugation in Sm.
By Lemma 2.1.19, this can be done in polynomial time.
Since we consider at most |R|2 pairs of σ and ω and |R|2 ≤ 4m by Lemma 6.1.2, the
algorithm runs in polynomial time.

Finally, we show that Algorithm 11 is correct and runs in polynomial time.

Theorem 6.5.3. Algorithm 11 computes NSn(H) in polynomial time.

Proof. Let N be the output of Algorithm 11. We first show that N = NSn(H) using
Proposition 4.2.6.
≤: Since 〈H,CSn(H)〉 ≤ NSn(H), it remains to show that lines 24 and 27 only
add normalising elements to N . Since φ is an isomorphism, by Lemma 6.5.1, the
function IsConjugatingIsom outputs g ∈ Sym(Supp(Hi) ∪ Supp(Hj)) such that
(Hi|Supp(Hi))g = Hj |Supp(Hj). If i = j, then g ∈ NSym(∆i)(Hi) and so by consider-
ing the natural inclusion of Sym(∆i) in Sn, we have g ∈ NSn(H).
Suppose now that i 6= j. Then c in line 23 conjugates Hi to Hj and Hj to Hi, and fixes
all other Ha where a 6= i, j. Since H = H1 ×H2 × . . .×Hr, we have c ∈ NSn(H).
≥: By Proposition 4.2.6, to show N ≥ NSn(H), it suffices to show that the following
conditions hold:

1. NSym(Supp(Hi))(Hi) ⊆ N for all 1 ≤ i ≤ r.

6.6. Extension: Groups in class InP(Sm) 127

2. If Hi and Hj are conjugate in Sym(Supp(Hi)∪Supp(Hj)), then there exists g ∈ N
such that Hg

i = Hj .

For the first assertion, let 1 ≤ i = j ≤ r. Then φ is the identity map, so the φω are
outer automorphisms of Hi. Then by Lemma 6.5.1, N contains a set

{xω ∈ Sym(Supp(Hi)) | ∀g ∈ G such that gxω = gω for some ω ∈ R},

where R is a transversal of Inn(Hi) in Aut(Hi). SinceHi ≤ H and CSym(Supp(Hi))(Hi) ≤
CSn(H), by Lemma 1.3.9, NSym(Supp(Hi))(Hi) ⊆ N .
For the latter assertion, let 1 ≤ i, j ≤ r where i 6= j and Hi and Hj are conjugate
in Sym(Supp(Hi) ∪ Supp(Hj)). By Lemma 6.3.3, there exists ω ∈ R such that φω is
induced by conjugation in Sym(Supp(Hi) ∪ Supp(Hj)). The result then follows from
Lemma 6.5.1.

For the complexity claim, line 1 is polynomial by Proposition 6.3.6. By Lemma 6.1.7,
we get RT in line 2 in polynomial time. By Lemma 6.5.2, S in line 3 can be computed
in polynomial time. We compute the finest disjoint direct product decomposition of
H using Algorithm 3, which runs in polynomial time by Theorem 3.0.2. By Proposi-
tion 2.1.2, computing the orbits of a group can be done in polynomial time, so line 5
runs in polynomial time. Since T and Hia are permutation isomorphic for all 1 ≤ i ≤ r
and 1 ≤ a ≤ si, and rsi ≤ n2, by Lemma 6.3.5, the dia in line 6 can be found in
polynomial time. By Theorem 2.1.16, CSn(H) can be computed in polynomial time,
so line 8 runs in polynomial time. Lines 10 and 11 give polynomially many iterations
since r ≤ k ≤ n and si ≤ k ≤ n. By Corollary 6.1.6, line 13 is in polynomial time. By
Lemma 6.1.7, we can obtain the R in line 17 in polynomial time. Lastly, line 20 is in
polynomial time by Lemma 6.5.1.

6.6 Extension: Groups in class InP(Sm)

In this section, we present a new algorithm for computing the normaliser NSn(H) of
H ≤ Sn for H ∈ InP(Sm), where m ≥ 5 and m 6= 6. First, we set up the notation we
will use throughout the section.

Notation 6.6.1. Let m ≥ 5 such that m 6= 6. Denote by Sm the symmetric group
acting naturally on m points. Let H be a subgroup of Sn in class InP(Sm) with orbits
Ω1,Ω2, . . . ,Ωk. Let Ω = ∪ki=1Ωi and assume that Ω = {1, 2, . . . , n}.
Let G = H|Ω1 ×H|Ω2 × . . .×H|Ωk , where we identify the direct product as a subgroup
of Sym(Ω). So H ≤ G and G ∼= Skm.
Let L be as in Lemma 4.3.8, so L ∼= Sm o Sk and NSn(H) ≤ L.
Denote by Am the alternating group acting naturally on m points. Let C be the
subgroup of G in class InP(Am) such that C ∼= Akm. So C|Ωi = Alt(Ωi) for all 1 ≤ i ≤ k.
Let A := H ∩ C.

128 Chapter 6: Normalisers of Groups In Class InP(T)

Next, we show that the subgroup A of H is in class InP(Am). Note that we will be
taking natural inclusion maps, so Sym(Ωi) ≤ Sym(Ω) for all 1 ≤ i ≤ k.

Lemma 6.6.2. Let H, A and Ωi be as in Notation 6.6.1. Then

1. A is a subdirect product of C, and so A ∈ InP(Am).

2. A = soc(H). Hence A E NSn(H), and NSn(H) ≤ NSn(A).

Proof. Part 1: By the definition of A, we have A ≤ C. It remains to show that
A|Ωi = Alt(Ωi) for all 1 ≤ i ≤ k.
Let 1 ≤ i ≤ k. Since H ≤ G and C E G, we have A = C ∩ H is normal in H. So
A|Ωi E H|Ωi , therefore A|Ωi = 1,Alt(Ωi) or Sym(Ωi). Since A ≤ C, the projection A|Ωi
is a subgroup of Alt(Ωi), so A|Ωi 6= Sym(Ωi). We shall show that A|Ωi 6= 1.
Since H|Ωi = Sym(Ωi), there exists h ∈ H such that h|Ωi ∈ Alt(Ωi) and h|Ωi is non-
trivial and not an involution. Then h2 ∈ A and (h2)|Ωi 6= 1. So A|Ωi 6= 1.
Part 2: Since A ∈ InP(Am), by Proposition 6.2.4, there exist subgroups N1, N2, . . . , Nr

of A such that each Ni is isomorphic to Am and A is the (internal) direct product of the
Ni. Observe that each Ni is normal in G. So the Ni are normal subgroups of H. Since
the Ni are simple, they are minimal normal subgroups of H, and hence are contained
in soc(H). So A = N1 ×N2 × . . .×Nr is also contained in soc(H).
To show that soc(H) ≤ A, we show that all minimal normal subgroups of H are
contained in A. Let N be a minimal normal subgroup of H. Then for all 1 ≤ i ≤ k,
we have N |Ωi E H|Ωi , so N |Ωi can be either 1,Alt(Ωi) or Sym(Ωi). Since a minimal
normal subgroup is a direct product of isomorphic simple groups, N |Ωi 6= Sym(Ωi) for
all 1 ≤ i ≤ k. Therefore N ⊆ A.
Lastly, since soc(H) is a characteristic subgroup of H, the last two assertions follow.

In Lemma 6.6.5, we will construct a complement of A in H. Before that, we give
some lemmas we will be using in the proof. We start with a well-known fact on the
automorphism groups of symmetric groups. For more information, see, for example,
[McC14].

Lemma 6.6.3. Let t 6= 2, 6. Then all automorphisms of St are inner.

Recall the definition of equivalent orbits from Definition 2.1.10. Recall also that we
identify Sym(Ωi) and Sym(Ωj) as subgroups of Sym(Ωi ∪ Ωj).

Lemma 6.6.4. Let H,A be as in Notation 6.6.1 and let Ωi and Ωj be H-orbits. If Ωi

and Ωj are equivalent orbits of A, then Ωi and Ωj are equivalent orbits of H.

Proof. Without loss of generality, suppose that i = 1 and j = 2. Let N := H(Ω1)|Ω2 .
Then by Corollary 1.4.4, we have N E H|Ω2 . So N = 1,Alt(Ω2) or Sym(Ω2).
We will first show that N = 1. Aiming for a contradiction, suppose that N contains
Alt(Ω2). Then there exists h ∈ H(Ω1) such that h|Ω2 is non-trivial and not an involution.

6.6. Extension: Groups in class InP(Sm) 129

It follows that h′ := h2 is an element of A where h′|Ω1 = 1 and h′|Ω2 6= 1. Then
Lemma 2.1.12 gives a contradiction. Hence N = 1.
Let θ1 : H|Ω1 → (H|Ω2)/N be the surjective homomorphism as in Corollary 1.4.4.
Since N = 1, the map θ̃1 : H|Ω1 → H|Ω2 defined by h|Ω1 7→ h|Ω2 is also a surjective
homomorphism. Since H|Ω1

∼= H|Ω2 and θ1 is a surjective homomorphism, the map θ̃1

is an isomorphism. Since H|Ω1
∼= Sm, by Lemma 6.6.3, θ̃1 is induced by conjugation in

Sym(Ω1 ∪Ω2). That is, there exists c ∈ Sym(Ω1 ∪Ω2) such that for all h ∈ H, we have
h|Ω2 = θ̃1(h|Ω1) = (h|Ω1)c. Finally, by Lemma 2.1.12, Ω1 and Ω2 are equivalent orbits
of H.

Now we show that we can compute a complement of A in H by taking some point
stabilisers of H. We will identify the direct product of permutation groups with disjoint
supports as a subgroup of the symmetric group over the disjoint union of the supports
of the direct factors. Recall that we will always be taking the inclusion maps Sym(Γ) ≤
Sym(∆) for all Γ ⊆ ∆.

Lemma 6.6.5. Let H and A be as in Notation 6.6.1. Fix a 2-subset Γ1 of Ω1. Let
F1 := H(Ω1\Γ1). For 2 ≤ i ≤ k, let

Fi =

Fi−1 if |Supp(Fi−1|Ωi)| = 2,

(Fi−1)(Ωi\Γi) for some fixed 2-subset Γi of Ωi, otherwise.

Let F := Fk. Then H = AF .

Proof. For all 1 ≤ i ≤ k, let ∆i be as in Corollary 1.4.4. We will inductively show that
H|∆i = A|∆iFi|∆i . For the base case, by Part 1 of Lemma 6.6.2, A|∆1 = Alt(Ω1). Since
H|∆1 = Sym(Ω1), by letting g1 ∈ Sym(Ω1) be the transposition with support Γ1, we
have F1|∆1 = 〈g1〉. Hence

H|∆1 = Sym(Ω1) = Alt(Ω1)〈g1〉 = A|∆1F1|∆1 .

For the inductive step, for notational convenience, we consider step k. By letting ∆ =

∆k−1 for notational convenience, assume that H|∆ = A|∆Fk−1|∆. Let Nk, Rk, θk−1 and
ϕk−1 be as in Corollary 1.4.4. Then, by considering Sym(Ωk) as a subgroup of Sym(Ω),
we have H = 〈ϕk−1(H|∆), Nk〉 and Nk E H|Ωk , so Nk is Sym(Ωk), Alt(Ωk) or 1. We
shall consider the three cases separately.
Case 1 : Suppose that Nk = Sym(Ωk). Then by Part 1 of Corollary 1.4.6,

H = H|∆ ×Nk

= (A|∆Fk−1|∆)× Sym(Ωk) by the inductive hypothesis. (6.1)

By the definition of A, we have A = A|∆ ×Alt(Ωk).
Since Fk−1 is the stabiliser of a subset of ∆, we have H(∆) ≤ Fk−1 and so H(∆)|Ωk ≤

130 Chapter 6: Normalisers of Groups In Class InP(T)

Fk−1|Ωk . However, H(∆)|Ωk = Nk = Sym(Ωk), so Fk−1|Ωk = Sym(Ωk) and thus Fk−1 =

Fk−1|∆ × Sym(Ωk). Hence F = Fk−1|∆ × Sym(Γk) for some 2-subset Γk of Ωk.
Therefore, from Equation (6.1), we get

H = (A|∆Fk−1|∆)× (Alt(Ωk)Sym(Γk))

= (A|∆ ×Alt(Ωk))(Fk−1|∆ × Sym(Γk)) = AF.

Case 2 : Suppose that Nk = Alt(Ωk). Then, by Corollary 1.4.4 and the inductive
hypothesis,

H = 〈ϕk−1(A|∆Fk−1|∆), Nk〉 = 〈ϕk−1(A|∆), ϕk−1(Fk−1|∆),Alt(Ωk)〉. (6.2)

We will first show that A = 〈ϕk−1(A|∆),Alt(Ωk)〉 and F = ϕk−1(Fk−1|∆).
If θk−1(A|∆) 6= 1, then the kernel of the restriction of θk−1 to A|∆ is a normal sub-
group of A|∆ of index 2. Since A|∆ is isomorphic to Arm for some r, and normal
subgroups of Arm is isomorphic to Aum for some u ≤ r, this gives a contradiction.
Hence θk−1(A|∆) = 1.Thus ϕk−1(A|∆) ≤ A, and so 〈ϕk−1(A|∆),Alt(Ωk)〉 ≤ A. Ob-
serve that as a consequence of Part 1 of Lemma 6.6.2, A ≤ A|∆ × Alt(Ωk). Since
〈ϕk−1(A|∆),Alt(Ωk)〉 contains A|∆ ×Alt(Ωk), we have A = 〈ϕk−1(A|∆),Alt(Ωk)〉.
To show that F = ϕk−1(Fk−1|∆), by the definition of Fk−1, it follows from Equa-
tion (6.2) that Fk−1 = 〈ϕk−1(Fk−1|∆),Alt(Ωk)〉. Since the support of Fk−1|Ωk is not
sized 2, we have F = (Fk−1)(Ωk\Γk) for any fixed 2-subset Γk ⊂ Ωk. Let g be the trans-
position in Sym(Γk), then θk−1(H|∆) = C2, so Rk has size 2 and we may let Rk = {1, g}.
Then F = ϕk−1(Fk−1|∆).
Hence, from Equation (6.2), H = 〈A,F 〉. Since A E H, we have H = AF .
Case 3 : Suppose that Nk = 1. Then H = ϕk−1(H|∆) = ϕk−1(A|∆Fk−1|∆). We first
show that there exists 1 ≤ j ≤ k − 1 such that Ωj and Ωk are equivalent A-orbits.
By Part 1 of Lemma 6.6.2, A ∈ InP(Am). Then by Proposition 6.2.4, there exists a
partition P = 〈C1 | C2 | . . . | Cr〉 of {1, 2, . . . , k} such that, by letting Λi = ∪j∈CiΩj for
all 1 ≤ i ≤ r, we have A|Λi ∼= Am and A = A|Λ1 ×A|Λ2 × . . .×A|Λr , where we identify
the direct product as a subgroup of Sym(Ω). Without loss of generality, suppose that
k ∈ C1. If C1 = {k}, then, by taking the natural inclusion map of the symmetric
groups, A|Ωk is a direct factor of A, and so A|Ωk ≤ A ≤ H. Since A|Ωk fixes ∆, it is a
subgroup of H(∆), which contradicts the fact that Nk = 1. So there exists 1 ≤ j ≤ k−1

such that j ∈ C1. Without loss of generality, suppose that j = 1.
Since Aut(Am) ∼= Sm = NSm(Am), by Lemma 6.2.7, all orbits of A|Λ1 are equiva-
lent to each other. Then by Lemma 6.6.4, Ω1 and Ωk are equivalent H-orbits. By
Lemma 2.1.12, there exists c ∈ Sym(Ω1 ∪ Ωk) such that for all h ∈ H, we have
h|Ωk = (h|Ω1)c. As a consequence, Fk−1|Ωk has support of size 2, and so F = Fk−1.

6.6. Extension: Groups in class InP(Sm) 131

Thus,

H = {(h|∆h|Ωk) | h ∈ H}

= {h|∆(h|Ω1)c | h ∈ H} since h|Ωk = (h|Ω1)c

= {af((af)|Ω1)c | a ∈ A|∆, f ∈ Fk−1|∆} by the inductive hypothesis

= {af(a|Ω1)c(f |Ω1)c | a ∈ A|∆, f ∈ Fk−1|∆}

= {(a(a|Ω1)c)(f(f |Ω1)c) | a ∈ A|∆, f ∈ Fk−1|∆} as Supp((a|Ω1)c) ∩ Supp(f) = ∅

= AFk−1 = AF since F = Fk−1.

Therefore, in all three cases of Nk, we have H = AF , as required.

Since A ∩ F = 1, the subgroup F is a complement of A in H. Next, we will show
that the normaliser NSn(H) conjugates F to a conjugate in H. We will be using the
fact that transpositions in Sm are conjugate in Am.

Lemma 6.6.6. Let m ≥ 5. Then all transpositions in Sm are conjugate in Am.

Proof. Let σ1 and σ2 be transpositions on Sm. Then there exists τ ∈ Sm such that
στ1 = σ2. If τ is an even permutation then we are done. Suppose otherwise. Since
m ≥ 4, there exists distinct points 1 ≤ i, j ≤ m such that i, j 6∈ Supp(σ2). Then
τ(i, j) ∈ Am and στ(i,j)

1 = σ2.

Lemma 6.6.7. Let H and A be as in Notation 6.6.1 and let F ≤ H be constructed as
in Lemma 6.6.5 such that H = AF . Let ν ∈ NSn(H). Then there exists h ∈ H such
that F ν = F h.

Proof. Let F ′ = F ν . Firstly, observe that since g permutes the H-orbits, for each
1 ≤ i ≤ k, the support of F ′|Ωi has size 2.
We proceed by induction on k. For the base case, let g, g′ ∈ Sym(Ω1) be transpositions
such that F = 〈g〉 and F ′ = 〈g′〉. Then there exists h ∈ H = Sym(Ω1) such that gh = g′

and so F h = F ′.
Let ∆ := ∪k−1

i=1 Ωi. Then, by the inductive hypothesis, there exists ĥ ∈ H|∆ such that
F ′|∆ = (F |∆)ĥ. Let N = H(∆)|Ωk . Then, by Corollary 1.4.4, N = Sym(Ωk),Alt(Ωk) or
1.
Case 1 : Suppose first that N = Sym(Ωk). Then by Part 1 of Corollary 1.4.6, , H =

H|∆×N . Since H|∆ and N have disjoint supports ∆ and Ωk respectively, and F, F ′ ≤
H, we have that F = F |∆ × F |Ωk and F ′ = F ′|∆ × F ′|Ωk . Let g, g′ ∈ Sym(Ωk) be
transpositions such that F |Ωk = 〈g〉 and F ′|Ωk = 〈g′〉. Then, there exists h̄ ∈ H|Ωk =

Sym(Ωk) such that F ′|Ωk = (F |Ωk)h. So h := ĥh̄ is an element of H where

F h = (F |∆)ĥ × (F |Ωk)h̄ = F ′|∆ × F ′|Ωk = F ′.

Case 2 : Suppose now that N = Alt(Ωk). By the observation in the opening paragraph,
there exist transpositions g, g′ ∈ Sym(Ωk) such that F |Ωk = 〈g〉 and F ′|Ωk = 〈g′〉.

132 Chapter 6: Normalisers of Groups In Class InP(T)

By Lemma 6.6.6, there exists h̄ ∈ N which conjugates g to g′. Let ϕk−1 be as in
Corollary 1.4.4, then h := ϕk−1(ĥ)h̄ is an element of H.
Let f ∈ F and consider fh ∈ H. Since h|∆ = ĥ, we deduce that (fh)|∆ = (f |∆)ĥ ∈ F ′|∆.
Let f ′ be an element of F ′ such that f ′|∆ = (fh)|∆. Since F ′|Ωk = 〈g′〉, such an f ′ is
unique as otherwise f ′|∆ and f ′|∆g′ are elements of H and so g′ ∈ H(∆) = Alt(Ωk). We
will show that fh = f ′.
By taking Rk in Corollary 1.4.4 as {1, g}, the projection (ϕk−1(ĥ))|Ωk is in 〈g〉. Since
f |Ωk ∈ 〈g〉 and h̄ conjugates g to g′, we have (fh)|Ωk = (fϕk−1(ĥ)h̄)|Ωk ∈ 〈g′〉. Since
F ′|Ωk = 〈g′〉, we have that (fhf ′−1)|Ωk is also contained in 〈g′〉. Now, since fh and f ′

have the same projection on ∆, the permutation fhf ′−1 pointwise stabilises ∆, and so
fhf ′−1 ∈ Alt(Ωk). Therefore fhf ′−1 ∈ 〈g′〉 ∩Alt(Ωk) = 1.
Case 3 : Lastly, suppose that N = 1. As in Lemma 6.6.5, there exists 1 ≤ j ≤ k − 1

such that Ωj and Ωk are equivalent orbits of H. Without loss of generality, suppose
that j = 1. Then, by Lemma 2.1.12, there exists c ∈ Sym(Ω1 ∪ Ωk) such that for all
h ∈ H, we have h|Ωk = (h|Ω1)c. Let h = ĥ(ĥ|Ω1)c ∈ H. Let f ∈ F and f ′ ∈ F ′ such
that (f |∆)ĥ = f ′|∆. Then

(f |Ωk)(ĥ|Ω1
)c = ((f |Ω1)c)(c−1ĥ|Ω1

c) = (f |Ω1)ĥ|Ω1
c = (f ′|Ω1)c = f ′|Ωk .

Therefore,

fh = (f |∆f |Ωk)h = (f |∆)ĥ(f |Ωk)(ĥ|Ω1
)c = (f ′|∆)(f ′|Ωk) = f ′ ∈ F ′.

So F h ≤ F ′. The reverse inclusion follows from symmetry.

Let L ∼= Sm oSk be as in Notation 6.6.1. We now show that we can compute NSn(H)

by computing the normalisers NL(A) and NL(F).

Theorem 6.6.8. Let H,A and L be as in Notation 6.6.1. Let F be as constructed in
Lemma 6.6.5. Then NSn(H) = (NL(F) ∩NL(A))H.

Proof. ≥: Clearly H ≤ NSn(H). To show that NL(F) ∩ NL(A) ≤ H, let h ∈ H and
g ∈ NL(F) ∩ NL(A). Then by Lemma 6.6.5, there exists a ∈ A and f ∈ F such that
h = af . Thus hg = agfg ∈ AF = H.
≤: Let g ∈ NSn(H). Then, by Lemma 6.6.7, there exists h ∈ H ≤ NSn(H) such that
F g = F h and so gh−1 is an element of NSn(H) which normalises F . That is, gh−1 ∈
NNSn (H)(F). By Lemma 4.3.8, NSn(H) ≤ L and so NSn(H) = NL(H). Therefore

gh−1 ∈ NNSn (H)(F) = NNL(H)(F) = NL(F) ∩NL(H).

By Part 2 of Lemma 6.6.2, NL(H) = L ∩ NSn(H) ≤ L ∩ NSn(A) = NL(A), hence
gh−1 ∈ NL(F) ∩NL(A).

Observe that A and F |Supp(F) are in classes InP(Am) and InP(C2) respectively.

6.6. Extension: Groups in class InP(Sm) 133

Therefore, we would like to use the algorithms in Section 6.5 and Section 5.4. The
following results show how we use Algorithms 11 and 6 to compute normalisers of
groups H in InP(Sm).

Recall from Notation 6.6.1 that L ∼= Sm o Sk, where Sym(Ω1) × Sym(Ω2) × . . . ×
Sym(Ωk) is the subgroup of L which embeds into the base group of the wreath product,
and the top group of the wreath product permutes the Ωi. Note that we identify the
direct product above as a subgroup of Sym(Ω).

Lemma 6.6.9. Let H,A and L be as in Notation 6.6.1. Then NL(A) = NSn(A).

Proof. Since NSym(Ω1)(A|Ω1) = NSm(Am) = Sm, by Lemma 4.3.8, NSn(A) ≤ L.

Lemma 6.6.10. Let H and L be as in Notation 6.6.1. Let F and the Γi be as in
Lemma 6.6.5. Let Γ := Supp(F). Let φ : NSym(Γ)(F |Γ) → Sym(Ω) be an isomorphism
where for all g ∈ NSym(Γ)(F |Γ),

1. φ(g)|Γ = g, and

2. for all 1 ≤ i, j ≤ k such that Γgi = Γj, the image φ(g) maps Ωi\Γi to Ωj\Γj.

Then NL(F) = 〈Imφ,Sym(Ω1\Γ1)×Sym(Ω2\Γ2)×. . .×Sym(Ωk\Γk)〉, where we identify
the direct product as a subgroup of Sym(Ω) with support Sym(Ω\Γ).

Proof. ≥: Firstly observe that Sym(Ω1\Γ1) × Sym(Ω2\Γ2) × . . . × Sym(Ωk\Γk) is a
subgroup of Sym(Ω1) × Sym(Ω2) × . . . × Sym(Ωk), which is contained in L. As the
direct product has support disjoint to the support of F , it normalises F . To show
Imφ ⊆ NL(F), let g ∈ NSym(Γ)(F |Γ). Clearly φ(g) normalises F , so it remains to show
that φ(g) ∈ L. Observe that if g induces a permutation σ on the Γi, then φ(g) induces
the same permutation σ on the Ωi. So φ(g) is contained in a subgroup of Sym(Ω)

isomorphic to Sm oSk, where Sym(Ω1)×Sym(Ω2)× . . .×Sym(Ωk) embeds into the base
group of the wreath product and the top group permutes the Ωi, which is exactly L.
≤: Let ν ∈ NL(F). Since NL(F) permutes the F -orbits, Γ is a union of orbits of NL(F).
Then g := ν|Γ ∈ NSym(Γ)(F |Γ). Since ν ∈ L, there exists a permutation σ ∈ Sk induced
by the action of ν on the Ωi. Then g induces the same permutation σ on the Γi. It
then follows that φ(g) induces the same permutation σ on the Ωi. So νφ(g)−1 setwise
stabilises each of the Ωi.
Since φ(g)|Γ = g = ν|Γ, the permutation νφ(g)−1 fixes Γ pointwise. So

νφ(g)−1 ∈ Sym(Ω1\Γ1)× Sym(Ω2\Γ2)× . . .× Sym(Ωk\Γk),

where we identify the direct product as a subgroup of Sym(Ω) with support Sym(Ω\Γ).

Therefore, we compute NSn(H) for H ∈ InP(Sm) as follows:

1. Compute A := soc(H).

134 Chapter 6: Normalisers of Groups In Class InP(T)

2. Compute a complement F of A in H as in Lemma 6.6.5. Let L ∼= Sm o Sk be as
in Notation 6.6.1.

3. Compute NSn(A) using Algorithm 11. By Lemma 6.6.9, NL(A) = NSn(A).

4. Let Γ = Supp(F). Compute NSym(Γ)(F |Γ) using Algorithm 6. Then compute
NL(F) as in Lemma 6.6.10.

5. Set N := 〈NL(F) ∩NL(A), H〉. By Theorem 6.6.8, N = NSn(H).

Lastly, note that by Proposition 2.1.17, A can be computed in polynomial time.
Also, since |Aut(Am)|/|NSm(Am)| = 1, we may use Corollary 6.4.4 for faster computa-
tion of NSn(A).

6.7 Results

In this section, we compare the runtimes of computing NSn(H) of H ≤ Sn in classes
InP(T) or InP(Sm), for transitive non-abelian simple group T and 5 ≤ m 6= 6,using
the GAP function Normalizer and our new algorithms.

6.7.1 Normaliser of H ∈ InP(T)

We shall consider H ∈ InP(T) for the different cases of T in Table 6.1.

T m Name |Out(T)| |Aut(T)|/|NSm(T)|
PrimitiveGroup(6,1) 6 PSL(2, 5) 2 1
PrimitiveGroup(6,3) 6 A6 4 2

PrimitiveGroup(12,3) 12 PSL(2, 11) 2 1
PrimitiveGroup(12,2) 12 M12 2 2

PrimitiveGroup(50,3) 50 PSL(2, 49) 1 1
PrimitiveGroup(50,1) 50 PSU(3, 5) 6 3

Table 6.1: Transitive non-abelian simple groups T considered for experiments.

For each T ≤ Sm and integer k, we generate a group H ≤ Smk in class InP(T)

by first generating a random partition P of {1, 2, . . . , k}. This partition shall give the
supports of the finest disjoint direct factors of H. That is, for each cell C of P , we have
H|∪i∈CΩi is a finest disjoint direct factor of H isomorphic to T .

We generate such a partition P by iteratively computing random partitions Pi of
{1, 2, . . . , i} for all 1 ≤ i ≤ k. Initialise P1 as 〈1〉. Let Pi be a partition of {1, 2, . . . , i}
and let s be the number of cells of Pi. We generate Pi+1 by first generating a random
number r from {1, 2, . . . , s+ 1}. If r ≤ s, we construct Pi+1 by adding i+ 1 to the cell
of Pi indexed by r. Else if r = s + 1, we construct Pi+1 by adding a new cell consists
of only i+ 1 to Pi. Finally, we set P = Pk.

6.7. Results 135

For each cell Ci of P , we generate a subdirect product Hi of T |Ci| isomorphic to T
with orbits {Ωj | j ∈ Ci} in the following way. First, we fix a generating set X of T .
For each j ∈ Ci, let cj ∈ Sn such that Supp(T)cj = Ωj , and let αj be a random element
of Aut(T). Then let Hi := 〈

∏
j∈Ci x

αjcj | x ∈ X〉. Finally, we get H ∈ InP(T) by
letting H be the direct product of the Hi.

For each T and k, we consider 10 groups H ≤ Smk in class InP(T). For each
instance of H, we compute its normalisers using both the GAP function Normalizer

and Algorithm 11. We report the lower quartile, median and upper quartile computation
time for both of these algorithms in Figure 6.1.

Next, we compare the algorithms of computing NSn(H) of H ≤ Sn in classes
InP(T), using the procedure described in Theorem 6.3.7 (noTests) and Algorithm 11
(withTests). More specifically, noTests is the same as withTests, but IsConju-

gatorIsom follows the procedure described in Lemma 2.1.19 instead of that in Algo-
rithm 12. We consider the groups H ∈ InP(T) which have 2 disjoint direct factors with
the same number of orbits s, for T = PrimitiveGroup(12,3),PrimitiveGroup(12,2).
Each of these H ≤ S24s is generated by first generating a partition P of {1, 2, . . . , 2s}
by first randomly shuffling the list l := [1, 2, . . . , 2s], and taking P as the partition with
cells C1 := {l[i] | 1 ≤ i ≤ s} and C2 := {l[i] | s + 1 ≤ i ≤ 2s}. Then H is generated
from P as before. The result is shown in Table 6.2.

s noTests withTests

1 0.125 0.25
2 0.258 0.3435
3 0.7815 0.5465
4 2.0625 0.735
5 4.4535 1.0545
6 7.6875 0.953
7 13.5315 1.063
8 24.0235 1.297
9 38.0315 1.477
10 58.133 1.5935
(a) T = PrimitiveGroup(12,3)

s noTests withTests

1 0.266 0.6405
2 1.7585 0.7815
3 2.664 1.0625
4 8.8435 1.1015
5 15.7735 1.3825
6 22.406 1.563
7 25.7735 1.7815
8 38.9135 2.0475
9 41.633 2.453
10 55.727 2.6485
(b) T = PrimitiveGroup(12,2)

Table 6.2: Median times (in seconds) of computing NSn(H) of 10 random H in class
InP(T), where H has 2 disjoint direct factors, each of which has s orbits, using Theo-
rem 6.3.7 (noTests) and Algorithm 11 (withTests).

6.7.2 Normaliser of H ∈ InP(Sm)

Let H ∈ InP(Sm). Then by Lemma 6.6.5, there exists A ∈ InP(Am) and F ∈ InP(C2)

such that H = AF . Hence we can generate a group H in InP(Sm) by generating a

136 Chapter 6: Normalisers of Groups In Class InP(T)

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
● ●

●
●

● ●
●

timeout

10−1

100

101

102

103

0 100 200 300
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(a) A = PrimitiveGroup(6, 1)

●

●

●

●

● ●

timeout

10−1

100

101

102

103

0 100 200 300
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(b) A = PrimitiveGroup(6, 3)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

timeout

10−1

100

101

102

103

0 200 400 600
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(c) A = PrimitiveGroup(12, 3)

●

●

●

●

timeout

10−1

100

101

102

103

0 200 400 600
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(d) A = PrimitiveGroup(12, 2)

timeout

100.5

101

101.5

102

102.5

103

400 800 1200
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(e) A = PrimitiveGroup(50, 3)

●

timeout

100.5

101

101.5

102

102.5

103

400 800 1200
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(f) A = PrimitiveGroup(50, 1)

Figure 6.1: Median log time (s) for computing normalisers of 10 random H ≤ Sn for
H ∈ InP(A) with 10 minutes timeout. The lower and upper boundaries of the shaded
area give the lower and upper quartiles respectively.

6.7. Results 137

●

●

●

●

timeout

10−2

10−1

100

101

102

103

0 100 200 300 400
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(a) m = 5

●

●

●

●

timeout

10−1

100

101

102

103

100 200 300 400
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(b) m = 8

●

●

●

timeout

100

101

102

103

100 200 300 400
n

m
ed

ia
n

lo
g

tim
e(

s)

●

New
GAP

(c) m = 15

timeout

100.5

101

101.5

102

102.5

103

100 200 300 400 500
n

m
ed

ia
n

lo
g

tim
e(

s)

New
GAP

(d) m = 25

Figure 6.2: Median log time (s) for computing normalisers of 10 random H ≤ Sn for
H ∈ InP(Sm) with 10 minutes timeout. The lower and upper boundaries of the shaded
area give the lower and upper quartiles respectively.

group A as in Section 6.7.1 and a group F as in Section 5.6.1 and take H = 〈A,F 〉.
However, experiments suggest that this will mostly result in A ∼= Akm.

Hence we construct a group H ∈ InP(Sm) the following way. We first construct a
random partition P = 〈C2 | C2 | . . . | Cr〉 of {1, 2, . . . , k} as in Section 6.7.1. Let s be
a random integer between dr/2e and r. Next, we construct a random s × r matrix M
over F2, as in Section 5.6.1. Then let M ′ be an s×k matrix over F2 such that M ′i,j = 1

if and only if j ∈ Cs and Mi,s = 1. For 1 ≤ j ≤ k, let gj be the transposition permuting
(j − 1)m+ 1 and (j − 1)m+ 2. Let F = 〈

∏k
j=1 g

Mi,j

j | 1 ≤ i ≤ s〉.
Next, we generate a finer partition P ′ from P by constructing partitions of each

cell of P , where each random partitions are generated as in Section 6.7.1. Then A ∈
InP(Am) is constructed from P ′ as in Section 6.7.1. Finally, take H = 〈A,F 〉.

We consider H ∈ InP(Sm) for m = 5, 8, 15 and 25. For each value of m and k, we
consider 10 groups H ≤ Smk in class InP(Sm). For each instance of H, we compute
its normalisers using both the GAP function Normalizer and the method described
in Section 6.6. We report the lower quartile, median and upper quartile computation
time for both of these algorithms in Figure 6.2.

138 Chapter 6: Normalisers of Groups In Class InP(T)

Conclusion

In this thesis, we investigated the Norm-Sym problem of computing the normaliser
NSn(H) of a given intransitive group H = 〈X〉 ≤ Sn.

We first introduced disjoint direct product decomposition and showed that the finest
such decomposition of a given permutation group can be computed in polynomial time.
The disjoint direct product decomposition can be used to convert the Norm-Sym prob-
lem into polynomially many smaller Norm-Sym problems and solving the conjugacy
problem for polynomially many smaller pairs of groups. We also saw how we can reduce
the Norm-Sym problem into a smaller Norm-Sym problem using equivalent orbits.

As the Norm-Sym problem is solved in practice using backtrack search, we pre-
sented several pruning methods using the aforementioned equivalent orbits and disjoint
direct product decompositions, and also using the permutation isomorphism classes of
certain projections. We then shifted our focus to the class InP(A) of groups whose
transitive constituents are permutation isomorphic to a transitive group A ≤ Sm, and
we reduce the computation of NSn(H) for H ∈ InP(A) into computing NS(H) for
a proper subgroup group S � Sn, hence reducing the size of the search space. The
methods mentioned so far are shown to be able to speed up calculations of NSn(H) for
H ∈ InP(A).

We then considered the case where H ∈ InP(A) and A is simple, which is further
divided into two parts based on whether A is abelian. For H ∈ InP(Cp) where p is
prime, we show that computing NSn(H) is polynomial equivalent to computing the
monomial automorphism group of codes over Fp. Using this alternative viewpoint, we
give an algorithm to compute NSn(H) with a better worst-case practical complexity
that performs efficiently in practice. For H ∈ InP(T) where T is non-abelian simple,
we showed that NSn(H) can be computed in polynomial time, and give an algorithm
that also performs well in practice. Finally we used these two algorithms to compute
NSn(H) for H ∈ InP(D2p) ∪ InP(Sm), where p is an odd prime and 5 ≤ m 6= 6.

For most of the thesis, we have focused on groups with permutation isomorphic
transitive constituents. The results from Chapters 5 and 6 may be useful when com-
puting NSn(H) where there exists ∆ such that H|∆ is highly intransitive and is in class
InP(Cp)∪ InP(T). However, although we can detect such a set ∆ in polynomial time,
it is unclear when we should check for it. While we believe that the pruning methods
from Chapter 4 may be beneficial in a more general setting, it is also unclear if the

139

140 Conclusion

benefits outweigh the cost of running such tests and refiners at every node of the search
tree. Therefore a future direction is to generalise the pruning methods and integrate
them into the state-of-the-art partition backtrack or graph backtrack framework, to
directly compare their effectiveness.

Bibliography

[ALSS11] Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald
Solomon. The classification of finite simple groups, volume 172 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Prov-
idence, RI, 2011. Groups of characteristic 2 type.

[Art55] Emil Artin. The orders of the classical simple groups. Comm. Pure Appl.
Math., 8:455–472, 1955.

[Atk75] Michael D. Atkinson. An algorithm for finding the blocks of a permutation
group. Math. Comput., 29:911–913, 1975.

[Bab15] László Babai. Graph isomorphism in quasipolynomial time. CoRR,
abs/1512.03547, 2015.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proc. of
the forty-eighth annual ACM symposium on Theory of Computing, pages
684–697. ACM, 2016.

[BCFS91] László Babai, Gene Cooperman, Larry Finkelstein, and Ákos Seress.
Nearly linear time algorithms for permutation groups with a small base.
In Proc. of the 1991 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’91, page 200–209, New York, 1991. ACM Press.

[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao.
Code equivalence and group isomorphism. In Proc. of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1395–1408.
SIAM, Philadelphia, PA, 2011.

[Bes06] Christian Bessiere. Chapter 3 - constraint propagation. In Francesca
Rossi, Peter [van Beek], and Toby Walsh, editors, Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence, pages 29
– 83. Elsevier, 2006.

[BF73] Raymond A. Beauregard and John B. Fraleigh. A first course in linear
algebra. Houghton Mifflin Co., Boston, Mass., 1973. With optional intro-
duction to groups, rings, and fields.

141

142 BIBLIOGRAPHY

[BKL83] László Babai, William M. Kantor, and Eugene M. Luks. Computational
complexity and the classification of finite simple groups. 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983), pages 162–
171, 1983.

[BSZ15] Kristine Bauer, Debasis Sen, and Peter Zvengrowski. A generalized Gour-
sat lemma. Tatra Mt. Math. Publ., 64:1–19, 2015.

[But83] Gregory Butler. Computing normalizers in permutation groups. J. Algo-
rithms, 4(2):163–175, 1983.

[Cam99] Peter J. Cameron. Permutation Groups. London Mathematical Society
Student Texts. Cambridge University Press, 1999.

[Car72] Roger W. Carter. Simple groups of Lie type. John Wiley & Sons, London-
New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28.

[CF94] Gene Cooperman and Larry Finkelstein. A random base change algorithm
for permutation groups. J. Symbolic Comput., 17(6):513–528, 1994.

[CFL89] Gene Cooperman, Larry Finkelstein, and Eugene M. Luks. Reduction of
group constructions to point stabilizers. In Proc. of the ACM-SIGSAM
1989 International Symposium on Symbolic and Algebraic Computation,
ISSAC ’89, page 351–356, New York, 1989. ACM Press.

[Cha21] Mun See Chang. Computing normalisers of highly intransitive groups (the-
sis data). Dataset, University of St Andrews Research Portal, 2021. https:
//doi.org/10.17630/710dfd8d-356b-4080-b2ad-c6791b7c21fe.

[Dem] Sophie Demassey. Global constraint catalog. https://sofdem.github.

io/gccat/. Accessed: 03 Sep 2020.

[DM96] John D. Dixon and Brian Mortimer. Permutation groups, volume 163 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1996.

[DM06] Alastair F. Donaldson and Alice Miller. Exact and approximate strategies
for symmetry reduction in model checking. FM 2006: Formal Methods,
pages 541–556, 2006.

[DM09] Alastair F. Donaldson and Alice Miller. On the constructive orbit problem.
Ann. Math. Artif. Intell., 57(1):1–35, 2009.

[Feu09] Thomas Feulner. The automorphism groups of linear codes and canonical
representatives of their semilinear isometry classes. Adv. Math. Commun.,
3(4):363–383, 2009.

[GAP20] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.11.0, 2020.

https://doi.org/10.17630/710dfd8d-356b-4080-b2ad-c6791b7c21fe
https://doi.org/10.17630/710dfd8d-356b-4080-b2ad-c6791b7c21fe
https://sofdem.github.io/gccat/
https://sofdem.github.io/gccat/

BIBLIOGRAPHY 143

[GJMRD09] Andrew Grayland, Chris Jefferson, Ian Miguel, and Colva M. Roney-
Dougal. Minimal ordering constraints for some families of variable sym-
metries. Ann. Math. Artif. Intell., 57(1):75–102, 2009.

[GMN08] Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalised arc con-
sistency for the AllDifferent constraint: an empirical survey. Artificial
Intelligence, 172(18):1973–2000, 2008.

[GMP17] Robert M. Guralnick, Attila Maróti, and László Pyber. Normalizers of
primitive permutation groups. Adv. Math., 310:1017–1063, 2017.

[Gor82] Daniel Gorenstein. Finite simple groups. University Series in Mathemat-
ics. Plenum Publishing Corp., New York, 1982. An introduction to their
classification.

[Gor83] Daniel Gorenstein. The classification of finite simple groups. Vol. 1. The
University Series in Mathematics. Plenum Press, New York, 1983. Groups
of noncharacteristic 2 type.

[Gou89] Édouard Goursat. Sur les substitutions orthogonales et les divisions
régulières de l’espace. Annales scientifiques de l’École Normale Supérieure,
3e série, 6:9–102, 1889.

[GPP06] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Chapter 10 -
symmetry in constraint programming. In Francesca Rossi, Peter van Beek,
and Toby Walsh, editors, Handbook of Constraint Programming, volume 2
of Foundations of Artificial Intelligence, pages 329 – 376. Elsevier, 2006.

[Gra11] Andrews Grayland. Automated static symmetry breaking in constraint sat-
isfaction problems. PhD thesis, University of St Andrews, 2011.

[Hol91] D. F. Holt. The computation of normalizers in permutation groups. J.
Symbolic Comput., 12(4-5):499–516, 1991.

[Hul05] Alexander Hulpke. Constructing transitive permutation groups. J. Sym-
bolic Comput., 39(1):1–30, 2005.

[Hul08] Alexander Hulpke. Normalizer calculation using automorphisms. In Com-
putational group theory and the theory of groups, volume 470 of Contemp.
Math., pages 105–114. Amer. Math. Soc., Providence, RI, 2008.

[Hul17] Alexander Hulpke. TransGrp, transitive groups library, Version 2.0.2.
http://www.math.colostate.edu/~hulpke/transgrp, Nov 2017. GAP
package.

[Hun74] Thomas W. Hungerford. Algebra. Holt, Rinehart and Winston, Inc., New
York-Montreal, Que.-London, 1974.

http://www.math.colostate.edu/~hulpke/transgrp

144 BIBLIOGRAPHY

[JPW19] Christopher Jefferson, Markus Pfeiffer, and Rebecca Waldecker. New re-
finers for permutation group search. J. Symbolic Comput., 92:70–92, 2019.

[JPWW19] Christopher Jefferson, Markus Pfeiffer, Rebecca Waldecker, and Wilf A.
Wilson. Permutation group algorithms based on directed graphs. arXiv
e-prints, page arXiv:1911.04783, November 2019.

[Kan85] William M. Kantor. Sylow’s theorem in polynomial time. J. Comput.
System Sci., 30(3):359–394, 1985.

[Kan90] William M. Kantor. Finding Sylow normalizers in polynomial time. J.
Algorithms, 11(4):523–563, 1990.

[KL90] William M. Kantor and Eugene M. Luks. Computing in quotient groups.
In Proc. of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, page 524–534, New York, 1990. ACM Press.

[KN09] Neeraj Kayal and Timur Nezhmetdinov. Factoring groups efficiently. In
Automata, languages and programming. Part I, volume 5555 of Lecture
Notes in Comput. Sci., pages 585–596. Springer, Berlin, 2009.

[Leo91] Jeffrey S. Leon. Permutation group algorithms based on partitions. I.
Theory and algorithms. J. Symbolic Comput., 12(4-5):533–583, 1991.

[LM02] Eugene M. Luks and Takunari Miyazaki. Polynomial-time normalizers for
permutation groups with restricted composition factors. In Proc. of the
2002 International Symposium on Symbolic and Algebraic Computation,
pages 176–183. ACM, New York, 2002.

[LM11] Eugene M. Luks and Takunari Miyazaki. Polynomial-time normaliz-
ers. Discrete Mathematics and Theoretical Computer Science, Vol. 13 no.
4(4):61–96, December 2011.

[LRW94] Eugene M. Luks, Ferenc Rákóczi, and Charles R. B. Wright. Computing
normalizers in permutation p-groups. In Proc. of the International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC ’94, page 139–146,
New York, 1994. ACM Press.

[Luk93] Eugene M. Luks. Permutation groups and polynomial-time computation.
In Groups and computation (New Brunswick, NJ, 1991), volume 11 of DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci., pages 139–175. Amer.
Math. Soc., Providence, RI, 1993.

[Lyo11] Richard Lyons. Automorphism groups of sporadic groups. arXiv e-prints,
page arXiv:1106.3760, June 2011.

BIBLIOGRAPHY 145

[McC14] Jon McCammond. The exceptional symmetry. arXiv e-prints, page
arXiv:1412.1855, December 2014.

[Miy06] Izumi Miyamoto. An improvement of GAP normalizer function for per-
mutation groups. In ISSAC 2006, pages 234–238. ACM, New York, 2006.

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II.
J. Symbolic Comput., 60:94–112, 2014.

[PJ08] Karen E. Petrie and Christopher Jefferson. Efficiently solving problems
where the solutions form a group. In Proc. of the 14th International Con-
ference on Principles and Practice of Constraint Programming, CP ’08,
page 529–533, Berlin, Heidelberg, 2008. Springer-Verlag.

[PR97] Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? IEEE
Trans. Inform. Theory, 43(5):1602–1604, 1997.

[PS18] Cheryl E. Praeger and Csaba Schneider. Permutation groups and Carte-
sian decompositions, volume 449 of London Mathematical Society Lecture
Note Series. Cambridge University Press, Cambridge, 2018.

[RDS20] Colva M. Roney-Dougal and Sergio Siccha. Normalisers of primitive per-
mutation groups in quasipolynomial time. Bulletin of the London Mathe-
matical Society, 52(2):358–366, April 2020.

[Sch94] Roland Schmidt. Subgroup lattices of groups, volume 14 of De Gruyter
Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.

[Sic20] Sergio Siccha. Towards efficient normalizers of primitive groups. In
Anna Maria Bigatti, Jacques Carette, James H. Davenport, Michael
Joswig, and Timo de Wolff, editors, Mathematical Software – ICMS 2020,
pages 105–114, Cham, 2020. Springer International Publishing.

[SS13] Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence
over Fq and its application to code-based cryptography. In Philippe Ga-
borit, editor, Post-Quantum Cryptography, pages 203–216. Springer Berlin
Heidelberg, 2013.

[The97] Heiko Theißen. Eine Methode zur Normalisatorberechnung in Permuta-
tionsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen.
PhD thesis, RWTH Aachen, 1997.

[TvL84] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union
algorithms. J. Assoc. Comput. Mach., 31(2):245–281, 1984.

146 BIBLIOGRAPHY

[vL99] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts
in Mathematics. Springer-Verlag, Berlin, third edition, 1999.

[Wie19] Daniel Wiebking. Normalizers and permutational isomorphisms in simply-
exponential time. CoRR, abs/1904.10454, 2019.

[Wil12] James B. Wilson. Existence, algorithms, and asymptotics of direct product
decompositions, I. Groups Complex. Cryptol., 4(1):33–72, 2012.

	Abstract
	Acknowledgements
	Introduction
	Permutation Groups
	Group actions
	Constructing groups from groups
	Normal subgroups and normalisers
	Structure of intransitive groups
	Base and strong generating sets

	Permutation Group Algorithms
	Polynomial time algorithms
	Problems not known to be in polynomial time
	Backtrack search in permutation groups
	The normaliser problem

	Disjoint Direct Product Decomposition
	Background and preliminaries
	Disjoint direct product decomposition
	Algorithm
	Experiments
	Conclusion and future work

	Normalisers of Highly Intransitive Groups
	Equivalent orbits
	Disjoint direct product decompositions
	Permutation isomorphism of projections
	Algorithm
	Results and discussion

	Normalisers of Groups In Class InP(Cp)
	Normaliser of H InP(Cp) and code automorphisms
	Complexity results
	Pruning techniques
	Algorithm
	Extension: Groups in class InP(D2p)
	Results

	Normalisers of Groups In Class InP(T)
	Polynomial time library
	Structure of subdirect products of Tk
	Normalisers in polynomial time
	Isomorphisms induced by conjugations
	Algorithm
	Extension: Groups in class InP(Sm)
	Results

	Conclusion
	Bibliography

