22 research outputs found
On-site correlation in valence and core states of ferromagnetic nickel
We present a method which allows to include narrow-band correlation effects
into the description of both valence and core states and we apply it to the
prototypical case of nickel. The results of an ab-initio band calculation are
used as input mean-field eigenstates for the calculation of self-energy
corrections and spectral functions according to a three-body scattering
solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle
spectra show a remarkable agreement with photoemission data in terms of band
width, exchange splitting, satellite energy position of valence states, spin
polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR
Relativistic effects and primordial non-Gaussianity in the galaxy bias
When dealing with observables, one needs to generalize the bias relation
between the observed galaxy fluctuation field to the underlying matter
distribution in a gauge-invariant way. We provide such relation at second-order
in perturbation theory adopting the local Eulerian bias model and starting from
the observationally motivated uniform-redshift gauge. Our computation includes
the presence of primordial non-Gaussianity. We show that large scale-dependent
relativistic effects in the Eulerian bias arise independently from the presence
of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits
from the primordial non-Gaussianity not only a scale-dependence, but also a
modulation with the angle of observation when sources with different biases are
correlated.Comment: 12 pages, LaTeX file; version accepted for publication in JCA