4 research outputs found

    Ground state cooling in a bad cavity

    Full text link
    We study the mechanical effects of light on an atom trapped in a harmonic potential when an atomic dipole transition is driven by a laser and it is strongly coupled to a mode of an optical resonator. We investigate the cooling dynamics in the bad cavity limit, focussing on the case in which the effective transition linewidth is smaller than the trap frequency, hence when sideband cooling could be implemented. We show that quantum correlations between the mechanical actions of laser and cavity field can lead to an enhancement of the cooling efficiency with respect to sideband cooling. Such interference effects are found when the resonator losses prevail over spontaneous decay and over the rates of the coherent processes characterizing the dynamics.Comment: 6 pages, 5 figures; J. Mod. Opt. (2007

    Monsters of Inhumanity? Methods of Infant Disposal

    No full text

    The Pendulum of Opinion: Changing Attitudes to Infanticide

    No full text

    Investigating Infanticide — An Enduring Phenomenon

    No full text
    corecore