6,653 research outputs found

    Network synchronization: Optimal and Pessimal Scale-Free Topologies

    Full text link
    By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex Networks 2007

    Neural network emulation of a rainfall-runoff model

    No full text
    International audienceThe potential of an artificial neural network to perform simple non-linear hydrological transformations is examined. Four neural network models were developed to emulate different facets of a recognised non-linear hydrological transformation equation that possessed a small number of variables and contained no temporal component. The modeling process was based on a set of uniform random distributions. The cloning operation facilitated a direct comparison with the exact equation-based relationship. It also provided broader information about the power of a neural network to emulate existing equations and model non-linear relationships. Several comparisons with least squares multiple linear regression were performed. The first experiment involved a direct emulation of the Xinanjiang Rainfall-Runoff Model. The next two experiments were designed to assess the competencies of two neural solutions that were developed on a reduced number of inputs. This involved the omission and conflation of previous inputs. The final experiment used derived variables to model intrinsic but otherwise concealed internal relationships that are of hydrological interest. Two recent studies have suggested that neural solutions offer no worthwhile improvements in comparison to traditional weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. Yet such fundamental properties are intrinsic aspects of catchment processes that cannot be excluded or ignored. The results from the four experiments that are reported in this paper are used to challenge the interpretations from these two earlier studies and thus further the debate with regards to the appropriateness of neural networks for hydrological modelling

    The ambivalent shadow of the pre-Wilsonian rise of international law

    Get PDF
    The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation

    Motivating and Sustaining Participation in VGI

    Get PDF
    Volunteers are the key component in the collection of Volunteered Geographic Information (VGI), so what motivates their participation, what strategies work in recruitment and how sustainability of participation can be achieved are key questions that need to be answered to inform VGI system design and implementation. This chapter reviews studies that have examined these questions and presents the main motivational factors that drive volunteer participation, as determined from empirical research. Some best practices from broader citizen science applications are also presented that may have relevance for VGI initiatives. Finally, a set of case studies from our experiences are used to illustrate how volunteers have been motivated to collect VGI through mapping parties, gamification and working with schools

    Probing the intrinsic state of a one-dimensional quantum well with a photon-assisted tunneling

    Full text link
    The photon-assisted tunneling (PAT) through a single wall carbon nanotube quantum well (QW) under influence an external electromagnetic field for probing of the Tomonaga Luttinger liquid (TLL) state is suggested. The elementary TLL excitations inside the quantum well are density (ρ±\rho_{\pm}) and spin (σ±\sigma_{\pm} ) bosons. The bosons populate the quantized energy levels ϵnρ+=Δn/g\epsilon^{\rho +}_n =\Delta n/ g and ϵnρ(σ±)=Δn\epsilon^{\rho -(\sigma \pm)}_n = \Delta n where Δ=hvF/L\Delta = h v_F /L is the interlevel spacing, nn is an integer number, LL is the tube length, gg is the TLL parameter. Since the electromagnetic field acts on the ρ+\rho_{+} bosons only while the neutral ρ\rho_{-} and σ±\sigma_{\pm} bosons remain unaffected, the PAT spectroscopy is able of identifying the ρ+\rho_{+} levels in the QW setup. The spin ϵnσ+\epsilon_n^{\sigma+} boson levels in the same QW are recognized from Zeeman splitting when applying a d.c. magnetic field H0H \neq 0 field. Basic TLL parameters are readily extracted from the differential conductivity curves.Comment: 10 pages, 5 figure

    Cognition-Enhancing Drugs: Can We Say No?

    Get PDF
    Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs
    corecore