338 research outputs found

    Therapeutic Antibody‐Based Drugs in the Treatment of Human Inflammatory Disorders

    Get PDF
    Inflammation causes debilitating human conditions and older treatments rely on global immunosuppression that non‐specifically alleviates symptoms. Currently, several monoclonal antibodies (mAbs) are available that specifically block pro‐inflammatory cytokines. These include mAbs specific to tumour necrosis factor (TNF), interleukin (IL)‐1β, IL‐6, IL‐17 and IL‐12/IL‐23. The chapter summarises the key elements in human inflammatory disease conditions, including various forms of arthritis, psoriasis, Crohn\u27s disease and ulcerative colitis, plus pyrin‐associated inflammatory syndromes and periodic fevers, to explain the benefit of cytokine neutralisation through mAb‐type reagents. The chapter reviews the efficacy and safety of the current repertoire of anti‐cytokine/cytokine receptor mAbs. It also discusses the known side effects and adverse events that are sometimes associated with systemic blockade of cytokines in vivo, and concludes that the accumulating knowledge of treatment failures can reveal unappreciated aspects of cytokine biology and even new treatment opportunities. The chapter includes mention of the rapidly expanding cohort of biosimilar mAbs and the mAbs to IL‐4, IL‐5 and IL‐13 that are now emerging, in addition to the need for treatments for disorders that remain refractory to the current repertoire of anti‐cytokine mAbs and conventional treatments. Thus, here we summarise the current status of anti‐cytokine mAbs for human inflammatory diseases

    TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future

    Get PDF
    Tumor Necrosis Factor (TNF), initially known for its tumor cytotoxicity, is a potent mediator of inflammation, as well as many normal physiological functions in homeostasis and health, and anti-microbial immunity. It also appears to have a central role in neurobiology, although this area of TNF biology is only recently emerging. Here, we review the basic biology of TNF and its normal effector functions, and discuss the advantages and disadvantages of therapeutic neutralization of TNF - now a commonplace practice in the treatment of a wide range of human inflammatory diseases. With over ten years of experience, and an emerging range of anti-TNF biologics now available, we also review their modes of action, which appears to be far more complex than had originally been anticipated. Finally, we highlight the current challenges for therapeutic intervention of TNF: (i) to discover and produce orally delivered small molecule TNF-inhibitors, (ii) to specifically target selected TNF producing cells or individual (diseased) tissue targets, and (iii) to pre-identify anti-TNF treatment responders. Although the future looks bright, the therapeutic modulation of TNF now moves into the era of personalized medicine with society's challenging expectations of durable treatment success and of achieving long-term disease remission

    Therapeutic Antibody-Based Drugs in the Treatment of Human Inflammatory Disorders

    Get PDF
    Inflammation causes debilitating human conditions and older treatments rely on global immunosuppression that non‐specifically alleviates symptoms. Currently, several monoclonal antibodies (mAbs) are available that specifically block pro‐inflammatory cytokines. These include mAbs specific to tumour necrosis factor (TNF), interleukin (IL)‐1β, IL‐6, IL‐17 and IL‐12/IL‐23. The chapter summarises the key elements in human inflammatory disease conditions, including various forms of arthritis, psoriasis, Crohn's disease and ulcerative colitis, plus pyrin‐associated inflammatory syndromes and periodic fevers, to explain the benefit of cytokine neutralisation through mAb‐type reagents. The chapter reviews the efficacy and safety of the current repertoire of anti‐cytokine/cytokine receptor mAbs. It also discusses the known side effects and adverse events that are sometimes associated with systemic blockade of cytokines in vivo, and concludes that the accumulating knowledge of treatment failures can reveal unappreciated aspects of cytokine biology and even new treatment opportunities. The chapter includes mention of the rapidly expanding cohort of biosimilar mAbs and the mAbs to IL‐4, IL‐5 and IL‐13 that are now emerging, in addition to the need for treatments for disorders that remain refractory to the current repertoire of anti‐cytokine mAbs and conventional treatments. Thus, here we summarise the current status of anti‐cytokine mAbs for human inflammatory diseases

    Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments

    Get PDF
    Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs). EVs are microscopic (50 nm−10 μM) phospholipid bilayer enclosed entities produced by virtually all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells' normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of EV biogenesis and production, or the size and EV composition, cancer cells have the potential to utilize EVs in a manner that enhances their survival. For example, cancer cell EV overproduction confers benefits to tumor growth, and tumor metastasis, compared with neighboring healthy cells. Herein, we summarize the current status of knowledge on different populations of EVs. We review the situations that regulate EV release, and the factors that instruct differential packaging or sorting of EV content. We then highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes, promoting tumor progression, metastases, and the mechanisms by which they facilitate the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial (and challenging) features of tumor-derived EVs that can be adapted and utilized for cancer treatments, including those already being investigated in human clinical trials

    Monocyte-mediated Tumoricidal Activity via the Tumor Necrosis Factor–related Cytokine, TRAIL

    Get PDF
    TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) is a molecule that displays potent antitumor activity against selected targets. The results presented here demonstrate that human monocytes rapidly express TRAIL, but not Fas ligand or TNF, after activation with interferon (IFN)-γ or -α and acquire the ability to kill tumor cells. Monocyte-mediated tumor cell apoptosis was TRAIL specific, as it could be inhibited with soluble TRAIL receptor. Moreover, IFN stimulation caused a concomitant loss of TRAIL receptor 2 expression, which coincides with monocyte acquisition of resistance to TRAIL-mediated apoptosis. These results define a novel mechanism of monocyte-induced cell cytotoxicity that requires TRAIL, and suggest that TRAIL is a key effector molecule in antitumor activity in vivo

    Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: Implications for the treatment of brain arteriovenous malformations

    Full text link
    © 2016 AANS. Objective Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. methods An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. results Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25-and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. coNclusioNs Ionizing radiation causes remarkable cellular changes in endothelial cells. Significant PS externalization is induced by radiation at doses of 15 Gy or higher, concomitant with a block in the cell cycle. Radiation-induced markers/targets may have high discriminating power to be harnessed in vascular targeting for AVM treatment

    B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2

    Full text link
    Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties. © 2013 Ferrata Storti Foundation

    Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (Trail) Contributes to Interferon γ–Dependent Natural Killer Cell Protection from Tumor Metastasis

    Get PDF
    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is expressed by in vitro activated natural killer (NK) cells, but the relevance of this observation to the biological function of NK cells has been unclear. Herein, we have demonstrated the in vivo induction of mouse TRAIL expression on various tissue NK cells and correlated NK cell activation with TRAIL-mediated antimetastatic function in vivo. Expression of TRAIL was only constitutive on a subset of liver NK cells, and innate NK cell control of Renca carcinoma hepatic metastases in the liver was partially TRAIL dependent. Administration of therapeutic doses of interleukin (IL)-12, a powerful inducer of interferon (IFN)-γ production by NK cells and NKT cells, upregulated TRAIL expression on liver, spleen, and lung NK cells, and IL-12 suppressed metastases in both liver and lung in a TRAIL-dependent fashion. By contrast, α-galactosylceramide (α-GalCer), a powerful inducer of NKT cell IFN-γ and IL-4 secretion, suppressed both liver and lung metastases but only stimulated NK cell TRAIL-mediated function in the liver. TRAIL expression was not detected on NK cells from IFN-γ–deficient mice and TRAIL-mediated antimetastatic effects of IL-12 and α-GalCer were strictly IFN-γ dependent. These results indicated that TRAIL induction on NK cells plays a critical role in IFN-γ–mediated antimetastatic effects of IL-12 and α-GalCer

    A Cyanobacteria Enriched Layer of Shark Bay Stromatolites Reveals a New Acaryochloris Strain Living in Near Infrared Light.

    Full text link
    The genus Acaryochloris is unique among phototrophic organisms due to the dominance of chlorophyll d in its photosynthetic reaction centres and light-harvesting proteins. This allows Acaryochloris to capture light energy for photosynthesis over an extended spectrum of up to ~760 nm in the near infra-red (NIR) spectrum. Acaryochloris sp. has been reported in a variety of ecological niches, ranging from polar to tropical shallow aquatic sites. Here, we report a new Acarychloris strain isolated from an NIR-enriched stratified microbial layer 4-6 mm under the surface of stromatolite mats located in the Hamelin Pool of Shark Bay, Western Australia. Pigment analysis by spectrometry/fluorometry, flow cytometry and spectral confocal microscopy identifies unique patterns in pigment content that likely reflect niche adaption. For example, unlike the original A. marina species (type strain MBIC11017), this new strain, Acarychloris LARK001, shows little change in the chlorophyll d/a ratio in response to changes in light wavelength, displays a different Fv/Fm response and lacks detectable levels of phycocyanin. Indeed, 16S rRNA analysis supports the identity of the A. marina LARK001 strain as close to but distinct from from the A. marina HICR111A strain first isolated from Heron Island and previously found on the Great Barrier Reef under coral rubble on the reef flat. Taken together, A. marina LARK001 is a new cyanobacterial strain adapted to the stromatolite mats in Shark Bay
    corecore