3 research outputs found

    Ionic Liquids and their Toxicity on the Enzyme Activity and Stability

    Get PDF
    Molecular interactions are crucial between the enzyme molecules and the surrounding solution in an enzymatic catalysis. Although aqueous solutions used as conventional enzymatic reaction media, non-aqueous enzymology emerges as a major area of biotechnology research and development. Ionic liquids, as new generation of promising alternatives to traditional organic solvents, possess potential industrial enzymatic applications. Enzymes in ionic liquids present enhanced activity, stability, and selectivity. In addition, the potential of ionic liquids in bio-catalysis is raised by high ability of dissolving a wide variety of substrates and their extensively tunable solvent properties through appropriate modification of the cations and anions. However, despite the bio-friendly nature of ionic liquids for enzymatic reactions, their growing interests increase concerns associated with toxicity and environmental pollution of such compounds. This mini-review presents a brief highlight of the contemporary knowledge of enzymes activity and stability in ionic liquids and the environmental influences regarding the potential risks related to the growing applications of these green solvents.HIGHLIGHTS•Conventional organic solvents can be replaced by ionic liquids as green solvents.•Ionic liquids are used as additives, catalysts, or reaction media in industries.•Advantages and disadvantages of ionic liquids are discussed.•Potential environmental hazards linked to application of ionic liquids are highlighted.•The environmental fate needs to be considered in designing safer ionic liquids

    Recognizing the role of Epstein-Barr virus in gastric cancer: transcriptomic insights into malignancy modulation

    No full text
    Abstract Background Studies show that Epstein-Barr virus (EBV) infection can play a role in malignancy and increase the risk of gastric cancer (GC). The objective of this research was to pinpoint genes whose expression may be influenced by EBV and play a role in the development of GC. Methods Candidate genes potentially susceptible to expression modulation in the presence of EBV were identified through the analysis of GSE185627 and GSE51575 datasets. The association of candidate genes with GC and the survival rate of patients was investigated based on the cancer genome atlas (TCGA) data. Also, pathways related to candidate genes were examined through the MsigDB database. The PPI network was used to identify Hub genes. To corroborate the obtained results, we utilized the RT-qPCR method, employing GC samples from both EBV + and EBV-cases, as well as adjacent normal samples. Results Our results showed that genes upregulated by the EBV in the GC cell line, as well as in EBV + samples, are significantly linked to pathways involving the immune response, inflammation, and the P53 pathway. Conversely, genes downregulated by EBV are closely linked to pathways involving cell proliferation and mTORC1. Examining the candidate genes revealed that a considerable portion of genes susceptible to downregulation under the influence of EBV exhibit oncogenic roles based on TCGA data. Moreover, some of these genes are associated with an unfavorable prognosis. Protein-protein interaction network analysis of candidate genes highlighted IFI44L and OAS2 as potential hub genes in the EBV-GC axis. Our RT-qPCR results further validated these findings, demonstrating that the expression levels of IFI44L and OAS2 were higher in EBV + samples compared to both healthy and EBV-samples. Conclusion Our study underscores the capacity of EBV to exert regulatory control over genes associated with GC malignancy. In addition to its inflammatory effects, EBV elicits transcriptomic changes that appear to attenuate the progression of GC
    corecore