104 research outputs found
Introgressive Hybridization of Schistosoma haematobium Group Species in Senegal: Species Barrier Break Down between Ruminant and Human Schistosomes
The file attached is the Published/publisher’s pdf version of the article.Copyright: © 2013 Webster et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors
Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants
Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro
The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of
potato shoots and generally results in unusable tubers. This disease has led to
multi-million dollar losses for growers in the central and western United States
over the past decade and impacts the livelihood of potato farmers in Mexico and
New Zealand. ZC is associated with ‘Candidatus
Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is
transmitted by a phloem-feeding psyllid vector, Bactericera
cockerelli Sulc. Research on this disease has been hampered by a
lack of robust culture methods and paucity of genome sequence information for
‘Ca. L. solanacearum’. Here we present the
sequence of the 1.26 Mbp metagenome of ‘Ca. L.
solanacearum’, based on DNA isolated from potato psyllids. The coding
inventory of the ‘Ca. L. solanacearum’ genome was
analyzed and compared to related Rhizobiaceae to better
understand ‘Ca. L. solanacearum’ physiology and
identify potential targets to develop improved treatment strategies. This
analysis revealed a number of unique transporters and pathways, all potentially
contributing to ZC pathogenesis. Some of these factors may have been acquired
through horizontal gene transfer. Taxonomically, ‘Ca. L.
solanacearum’ is related to ‘Ca. L.
asiaticus’, a suspected causative agent of citrus huanglongbing, yet many
genome rearrangements and several gene gains/losses are evident when comparing
these two Liberibacter. species. Relative to ‘Ca. L.
asiaticus’, ‘Ca. L. solanacearum’ probably
has reduced capacity for nucleic acid modification, increased amino acid and
vitamin biosynthesis functionalities, and gained a high-affinity iron transport
system characteristic of several pathogenic microbes
A New Integrated Pest Management (IPM) Model for Cercospora Leaf Spot of Sugar Beets in the Po Valley, Italy
Development and Validation of Conventional and Quantitative Polymerase Chain Reaction Assays for the Detection of Storage Rot Potato Pathogens, Phytophthora erythroseptica, Pythium ultimum and Phoma foveata
Characterization of Fusarium spp. responsible for causing dry rot of potato in Great Britain
The occurrence of thiabendazole-resistant isolates of Helminthosporium solani on potato seed tubers in Russia
Reduction of silver scurf on potatoes by pre- and post-storage treatment of seed tubers with imazalil
- …
