8 research outputs found
Quantifying overlap between the Deepwater Horizon oil spill and predicted bluefin tuna spawning habitat in the Gulf of Mexico
Atlantic bluefin tuna (Thunnus thynnus) are distributed throughout the North Atlantic and are both economically valuable and heavily exploited. The fishery is currently managed as two spawning populations, with the GOM population being severely depleted for over 20 years. In April-August of 2010, the Deepwater Horizon oil spill released approximately 4 million barrels of oil into the GOM, with severe ecosystem and economic impacts. Acute oil exposure results in mortality of bluefin eggs and larvae, while chronic effects on spawning adults are less well understood. Here we used 16 years of electronic tagging data for 66 bluefin tuna to identify spawning events, to quantify habitat preferences, and to predict habitat use and oil exposure within Gulf of Mexico spawning grounds. More than 54,000 km(2) (5%) of predicted spawning habitat within the US EEZ was oiled during the week of peak oil dispersal, with potentially lethal effects on eggs and larvae. Although the oil spill overlapped with a relatively small portion of predicted spawning habitat, the cumulative impact from oil, ocean warming and bycatch mortality on GOM spawning grounds may result in significant effects for a population that shows little evidence of rebuilding
Temperature dependency of element incorporation into European eel (Anguilla anguilla) otoliths
The present study experimentally tested the influence of water temperature on the inclusion of 15 elements into juvenile European eel (Anguilla anguilla) otoliths in freshwater. It should be investigated (1) if temperature effects on otolith Sr/Ca might impair the interpretation of migration studies and (2) if the elemental composition of otoliths can be used to reconstruct experienced temperature histories of eels. Therefore, eels were kept under full experimental conditions at three different water temperatures (14 °C, 19 °C and 24 °C) for 105 days. Thereafter, laser ablation inductively coupled mass spectrometry (LA-ICPMS) was conducted on the outer edge of their otoliths. Our analyses revealed significant temperature effects on otolith Na/Ca, Sr/Ca, Mg/Ca, Mn/Ca, Ba/Ca, Zr/Ca and Y/Ca ratios. Variations of Sr/Ca caused by temperature were far below those used to detect eel movements between waters of different salinities and will therefore not affect the interpretation of migration studies. Elemental fingerprints of Sr/Ca, Mg/Ca, Mn/Ca and Ba/Ca ratios resulted in clearly separated groups according to temperature treatments, indicating that changes in water temperature might lead to characteristic changes in otolith element composition. However, the successful application of elemental fingerprints to reconstruct moderate changes of water temperature seems doubtful because the influence of somatic growth on otolith microchemistry still remains unclear, and temperature-induced variations could be overlaid by changes of water element concentrations during growth periods. Nevertheless, our results contribute to the completion of knowledge about factors influencing element incorporation and help to explain variations in element composition of fish otoliths
What makes nearshore habitats nurseries for nekton? An emerging view of the nursery role hypothesis
Estuaries and other coastal habitats are considered essential for the survival of early life stages of commercial, recreational, and other ecologically important species. While early designations simply referred to habitats with higher densities of juveniles as nurseries, the definition was improved by arguing that contribution per unit area to the production of individuals that recruit to adult populations is greater, on average, in nursery habitats. However, this and related approaches typically consider critical habitats as individual, homogeneous entities that are static in nature and do not specifically incorporate important dynamics that determine nursery function. The latter include environmental variability, estuarine hydrodynamics, trophic coupling, ontogenetic habitat shifts, and spatially explicit usage of habitat patches and corridors within larger seascapes. Subsequent studies have identified important factors that regulate nursery value, and researchers working independently across the globe have not only supported the advances made in defining the processes underlying nursery function but, as set forth in this narrative, have advanced it while suggesting that much work still needs to be done to improve our understanding of the links between juvenile nekton survival and the estuarine-coastal seascape. We discuss the current nursery role hypothesis and the data supporting (or refuting) it along with the implications for management of estuarine habitats for the conservation or restoration of nursery function