53 research outputs found

    Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis

    Get PDF
    Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool

    SCORE studies on the impact of drug treatment on morbidity due to <i>Schistosoma mansoni</i> and <i>Schistosoma haematobium</i> infection

    Get PDF
    The Schistosomiasis Consortium for Operational Research (SCORE) was funded in 2008 to improve the evidence base for control and elimination of schistosomiasis-better understanding of the systemic morbidities experienced by children in schistosomiasis-endemic areas and the response of these morbidities to treatment, being essential for updating WHO guidelines for mass drug administration (MDA) in endemic areas. This article summarizes the SCORE studies that aimed to gauge the impact of MDA-based treatment on schistosomiasis-related morbidities. Morbidity cohort studies were embedded in the SCORE's larger field studies of gaining control of schistosomiasis in Kenya and Tanzania. Following MDA, cohort children had less undernutrition, less portal vein dilation, and increased quality of life in Year 5 compared with baseline. We also conducted a pilot study of the Behavioral Assessment System for Children (BASC-2) in conjunction with the Kenya gaining control study, which demonstrated beneficial effects of treatment on classroom behavior. In addition, the SCORE's Rapid Answers Project performed systematic reviews of previously available data, providing two meta-analyses related to morbidity. The first documented children's infection-related deficits in school attendance and achievement and in formal tests of learning and memory. The second showed that greater reductions in egg output following drug treatment correlates significantly with reduced odds of most morbidities. Overall, these SCORE morbidity studies provided convincing evidence to support the use of MDA to improve the health of school-aged children in endemic areas. However, study findings also support the need to use enhanced metrics to fully assess and better control schistosomiasis-associated morbidity

    Integration of prevention and control measures for female genital schistosomiasis, HIV and cervical cancer

    Get PDF
    Female genital schistosomiasis as a result of chronic infection with Schistosoma haematobium (commonly known as bilharzia) continues to be largely ignored by national and global health policy-makers. International attention for large-scale action against the disease focuses on whether it is a risk factor for the transmission of human immunodeficiency virus (HIV). Yet female genital schistosomiasis itself is linked to pain, bleeding and sub- or infertility, leading to social stigma, and is a common issue for women in schistosomiasis-endemic areas in sub-Saharan Africa. The disease should therefore be recognized as another component of a comprehensive health and human rights agenda for women and girls in Africa, alongside HIV and cervical cancer. Each of these three diseases has a targeted and proven preventive intervention: antiretroviral therapy and pre-exposure prophylaxis for HIV; human papilloma virus vaccine for cervical cancer; and praziquantel treatment for female genital schistosomiasis. We discuss how female genital schistosomiasis control can be integrated with HIV and cervical cancer care. Such a programme will be part of a broader framework of sexual and reproductive health and rights, women’s empowerment and social justice in Africa. Integrated approaches that join up multiple public health programmes have the potential to expand or create opportunities to reach more girls and women throughout their life course. We outline a pragmatic operational research agenda that has the potential to optimize joint implementation of a package of measures responding to the specific needs of girls and wome

    Five-year impact of different multi-year mass drug administration strategies on childhood Schistosoma mansoni-associated morbidity:A combined analysis from the schistosomiasis consortium for operational research and evaluation cohort studies in the Lake Victoria Regions of Kenya and Tanzania

    Get PDF
    The WHO recommends mass treatment with praziquantel as the primary approach for; Schistosoma mansoni; -related morbidity control in endemic populations. The Schistosomiasis Consortium for Operational Research and Evaluation implemented multi-country, cluster-randomized trials to compare effectiveness of community-wide and school-based treatment (SBT) regimens on prevalence and intensity of schistosomiasis. To assess the impact of two different treatment schedules on; S. mansoni; -associated morbidity in children, cohort studies were nested within the randomized trials conducted in villages in Kenya and Tanzania having baseline prevalence β‰₯ 25%. Children aged 7-8 years were enrolled at baseline and followed to ages 11-12 years. Infection intensity and odds of infection were reduced both in villages receiving four years of annual community-wide treatment (CWT) and those who received biennial SBT over 4 years. These regimens were also associated with reduced odds of undernutrition and reduced odds of portal vein dilation at follow-up. However, neither hemoglobin levels nor the prevalence of the rare abnormal pattern C liver scores on ultrasound improved. For the combined cohorts, growth stunting worsened in the areas receiving biennial SBT, and maximal oxygen uptake as estimated by fitness testing scores declined under both regimens. After adjusting for imbalance in starting prevalence between study arms, children in villages receiving annual CWT had significantly greater decreases in infection prevalence and intensity than those villages receiving biennial SBT. Although health-related quality-of-life scores improved in both study arms, children in the CWT villages gained significantly more. We conclude that programs using annual CWT are likely to achieve better overall; S. mansoni; morbidity control than those implementing only biennial SBT

    Impact of different mass drug administration strategies for gaining and sustaining control of <i>Schistosoma mansoni</i> and <i>Schistosoma haematobium</i> infection in Africa

    Get PDF
    This report summarizes the design and outcomes of randomized controlled operational research trials performed by the Bill & Melinda Gates Foundation-funded Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) from 2009 to 2019. Their goal was to define the effectiveness and test the limitations of current WHO-recommended schistosomiasis control protocols by performing large-scale pragmatic trials to compare the impact of different schedules and coverage regimens of praziquantel mass drug administration (MDA). Although there were limitations to study designs and performance, analysis of their primary outcomes confirmed that all tested regimens of praziquantel MDA significantly reduced local; Schistosoma; infection prevalence and intensity among school-age children. Secondary analysis suggested that outcomes in locations receiving four annual rounds of MDA were better than those in communities that had treatment holiday years, in which no praziquantel MDA was given. Statistical significance of differences was obscured by a wider-than-expected variation in community-level responses to MDA, defining a persistent hot spot obstacle to MDA success. No MDA schedule led to elimination of infection, even in those communities that started at low prevalence of infection, and it is likely that programs aiming for elimination of transmission will need to add supplemental interventions (e.g., snail control, improvement in water, sanitation and hygiene, and behavior change interventions) to achieve that next stage of control. Recommendations for future implementation research, including exploration of the value of earlier program impact assessment combined with intensification of intervention in hot spot locations, are discussed

    Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite <i>Trichomonas vaginalis</i>

    Get PDF
    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease

    Cold Physiology: Postprandial Blood Flow Dynamics and Metabolism in the Antarctic Fish Pagothenia borchgrevinki

    Get PDF
    Previous studies on metabolic responses to feeding (i.e. the specific dynamic action, SDA) in Antarctic fishes living at temperatures below zero have reported long-lasting increases and small peak responses. We therefore hypothesized that the postprandial hyperemia also would be limited in the Antarctic fish Pagothenia borchgrevinki. The proportion of cardiac output directed to the splanchnic circulation in unfed fish was 18%, which is similar to temperate fish species. Contrary to our prediction, however, gastrointestinal blood flow had increased by 88% at twenty four hours after feeding due to a significant increase in cardiac output and a significant decrease in gastrointestinal vascular resistance. While gastric evacuation time appeared to be longer than in comparable temperate species, digestion had clearly commenced twenty four hours after feeding as judged by a reduction in mass of the administered feed. Even so, oxygen consumption did not increase suggesting an unusually slowly developing SDA. Adrenaline and angiotensin II was injected into unfed fish to investigate neuro-humoral control mechanisms of gastrointestinal blood flow. Both agonists increased gastrointestinal vascular resistance and arterial blood pressure, while systemic vascular resistance was largely unaffected. The hypertension was mainly due to increased cardiac output revealing that the heart and the gastrointestinal vasculature, but not the somatic vasculature, are important targets for these agonists. It is suggested that the apparently reduced SDA in P. borchgrevinki is due to a depressant effect of the low temperature on protein assimilation processes occurring outside of the gastrointestinal tract, while the gastrointestinal blood flow responses to feeding and vasoactive substances resemble those previously observed in temperate species

    Circulating CD14brightCD16+ 'intermediate' monocytes exhibit enhanced parasite pattern recognition in human helminth infection.

    Get PDF
    Circulating monocyte sub-sets have recently emerged as mediators of divergent immune functions during infectious disease but their role in helminth infection has not been investigated. In this study we evaluated whether 'classical' (CD14brightCD16-), 'intermediate' (CD14brightCD16+), and 'non-classical' (CD14dimCD16+) monocyte sub-sets from peripheral blood mononuclear cells varied in both abundance and ability to bind antigenic material amongst individuals living in a region of Northern Senegal which is co-endemic for Schistosoma mansoni and S. haematobium. Monocyte recognition of excretory/secretory (E/S) products released by skin-invasive cercariae, or eggs, of S. mansoni was assessed by flow cytometry and compared between S. mansoni mono-infected, S. mansoni and S. haematobium co-infected, and uninfected participants. Each of the three monocyte sub-sets in the different infection groups bound schistosome E/S material. However, 'intermediate' CD14brightCD16+ monocytes had a significantly enhanced ability to bind cercarial and egg E/S. Moreover, this elevation of ligand binding was particularly evident in co-infected participants. This is the first demonstration of modulated parasite pattern recognition in CD14brightCD16+ intermediate monocytes during helminth infection, which may have functional consequences for the ability of infected individuals to respond immunologically to infection

    Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    Get PDF
    The human parasite Trichomonas vaginalis causes trichomoniasis, the world's most common non-viral sexually transmitted infection. Research on T. vaginalis genetic diversity has been limited by a lack of appropriate genotyping tools. To address this problem, we recently published a panel of T. vaginalis-specific genetic markers; here we use these markers to genotype isolates collected from ten regions around the globe. We detect high levels of genetic diversity, infer a two-type population structure, identify clinically relevant differences between the two types, and uncover evidence of genetic exchange in what was believed to be a clonal organism. Together, these results greatly improve our understanding of the population genetics of T. vaginalis and provide insights into the possibility of genetic exchange in the parasite, with implications for the epidemiology and control of the disease. By taking into account the existence of different types and their unique characteristics, we can improve understanding of the wide range of symptoms that patients manifest and better implement appropriate drug treatment. In addition, by recognizing the possibility of genetic exchange, we are more equipped to address the growing concern of drug resistance and the mechanisms by which it may spread within parasite populations
    • …
    corecore