9 research outputs found

    Design of an automatic optical system to measure anthropometric hand parameters

    Get PDF
    AbstractPersonalized medicine is an effective tool to improve the quality of rehabilitation and treatment for patients with disabilities. This study deals with the development of a low-cost hand scanner for the acquisition of anthropometric measures. The data acquired by the scanner is used, thanks to the developed procedure, to tailor the dimensions of a hand exoskeleton. The exoskeleton is used for assistive and rehabilitation purposes

    External devices increasing bone quality in animals: a systematic review.

    Get PDF
    Background: Osteoporosis can reduce bone quality and increase the risk of fractures. In addition to pharmacological approaches, physical activity, and implanted devices, external devices can also be detected in the literature as a technique to strengthen bones. This type of intervention arises to be particularly promising because it minimizes the invasiveness of therapy. Methods: A systematic review of the technologies involved in such devices was carried out to identify the most fruitful ones in improving bone quality. This review, according to the PRISMA Statement, focuses on studies involving animals, and excludes pharmaceutical approaches. Findings: The animal models and devices used, their settings, interventions, outcomes measured, and consequent effect on bone quality are reported for each detected technology. Ultrasound and laser arose to be the most studied technologies in the literature, even if they have yet to be proved to have a significant effect on bone quality. Interpretation: External devices for bone quality improvement offer a non-invasive approach that causes minimum discomfort to the patient. This review aimed to detect which technologies reported in the literature significantly affect bone quality. The results showed that several technologies are currently used to improve bone quality. However, each study measures different outcomes and uses different measurement methods, device settings, and interventions. This lack of standardization and the reduced number of articles found do not allow for properquantitative comparisons

    Tailor-Made Hand Exoskeletons at the University of Florence: From Kinematics to Mechatronic Design

    Get PDF
    Recently, robotics has increasingly become a companion for the human being and assisting physically impaired people with robotic devices is showing encouraging signs regarding the application of this largely investigated technology to the clinical field. As of today, however, exoskeleton design can still be considered a hurdle task and, even in modern robotics, aiding those patients who have lost or injured their limbs is surely one of the most challenging goal. In this framework, the research activity carried out by the Department of Industrial Engineering of the University of Florence concentrated on the development of portable, wearable and highly customizable hand exoskeletons to aid patients suffering from hand disabilities, and on the definition of patient-centered design strategies to tailor-made devices specifically developed on the different users’ needs. Three hand exoskeletons versions will be presented in this paper proving the major taken steps in mechanical designing and controlling a compact and lightweight solution. The performance of the resulting systems has been tested in a real-use scenario. The obtained results have been satisfying, indicating that the derived solutions may constitute a valid alternative to existing hand exoskeletons so far studied in the rehabilitation and assistance fields
    corecore