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Abstract— Spinal Muscular Atrophy (SMA) is a neuromus-
cular disease characterized by the degeneration of the a-motor
neurons in the spinal cord, resulting in progressive proximal
muscle weakness and paralysis. It is the second most common
fatal autosomal recessive disorder after cystic fibrosis in the
world. In the context of assistive robotics for SMA, in this work
the authors have preliminarily assessed the feasibility of using
low-cost electromyography pattern recognition and simultane-
ous/proportional myocontrol to enforce smooth, intuitive control
of an assistive hand exoskeleton system. A target achievement
control test has involved ten healthy subjects. Synthetic noise
has been added to their surface ElectroMyoGraphic (sSEMG)
signals in order to reach a signal-to-noise ratio similar to that
of SEMG signals gathered from a SMA patient. The results
indicate that, even neglecting any learning effect, an SMA
patient could reach an average success rate of up to 82%
through the proposed approach.

I. INTRODUCTION

Spinal Muscular Atrophy (SMA) is a severe neuromus-
cular disease characterized by the degeneration of a-motor
neurons in the spinal cord, resulting in a progressive proximal
muscle weakness and paralysis [1]. Although there currently
is no treatment for SMA, much can be done in the context
of Assistive Robotics to assist the patient’s loss of motor
functions. In particular, given the type of SMA and its
stage, the patient can still be able to produce significant
voluntary muscular activity. Indeed, as long as the patient
can produce reasonably distinct and repeatable SEMG signal
patterns, Machine Learning (ML) can be used to control an
assistive device. Given the nature of the interaction between
the devices and their users, it is desirable to let the patient
take full, proportional, smooth and intuitive control [2].

Two different ML approaches [3], [4] are currently being
tested by the authors to assess the control experience on
an assistive Hand Exoskeleton System (HES) [5]. In this
work, the feasibility of applying simultaneous, proportional
and incremental myocontrol to the device has been evalu-
ated through a Target Achievement Control (TAC) test [6],
simulated by means of a Blender model of the HES. At this
point of the experimentation, the HES has no other purpose
than to visually familiarize the user with the final system.
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Fig. 1. The exploited experimental setup. On the gray background the
employed hardware, while below the virtual models of the HES.

II. MATERIALS AND METHODS

In this study, ten healthy participants (aged between 24
and 61 years) — voluntarily enrolled — have been asked
to control a virtual avatar of the exoskeleton using their
own voluntary muscle activity, recorded in real-time using a
Myo armband. Synthetic noise (Gaussian noise with variable
variance) has been added to the SEMG signals in order to
progressively reach the Signal-to-Noise Ratio (SNR) that
characterized those collected from SMA patients. It is worth
noting that, although there are no specific references in
the literature, this approach has been considered sufficiently
reliable since SMA is known to weaken the muscle activity
(thus lowering the SNR) without altering neuromuscular
patterns. The target SNR (SNR4 = 15.97) has been identified
through previous recordings from a patient affected by SMA
type II, and other three different SNR levels have been
defined (SNR3 = 52.80; SNR2 = 125.11; SNR1 = 211.82);
where a higher SNR corresponds to a better signal.

A. Experimental Setup

As can be seen from Fig. 1, the experimental setup relies
on the wearing of the Myo armband that transmits the
SEMG signal, by means of Bluetooth communication, to a
laptop running the intent detection system. The sSEMG signal
is acquired, processed and labeled by a custom software
suite written in the C# and Python languages. Finally, the
HES configuration, reference and prediction, are provided to
two distinct Blender digital twins through a User Datagram
Protocol (UDP) message-based system.



B. Experimental Protocol

The test participants have been asked to wear the Myo
armband in a preliminary stage of the experiment as well as
to avoid sensor doffing or displacements; as a matter of fact,
this procedure apriostically reduces the presence of undesired
effects, such as electrode shifts, and allows for coherent re-
sults over the whole experimental campaign. The procedural
architecture comprises of two primary hierarchical stages:
firstly, during the so-called “training phase”, the myoelectric
control develops and learns a regression model that deals
with the prediction of the hand configurations starting from
the SEMG signals; subsequently, the TAC test evaluates
the performance of the learned model to generalize over
several, distinct tasks. For what concerns the data acquisition
and training process, the subjects, after having received a
comprehensive description of the routines, carry out three
different hand gestures (complete closure, complete exten-
sion, and resting) in a double-repetition sequence. The whole
procedure exploits a straightforward Graphical User Interface
(GUI) which, by guiding the test contributors, uniforms the
test architecture over the whole set of participants.

Conversely, the TAC test has been structured so as to
achieve four actions (complete closure, semi-closure, semi-
extension, complete extension) alongside four incremental
SNR levels, for a total of sixteen different combinations. The
participants have been then asked to fulfill five unordered
repetitions of each of the aforementioned combinations: the
whole test was hence composed of series of 80 tasks.

As far as the specific protocol is concerned, the par-
ticipants have been requested to reproduce and hold for
1.5 s the hand configuration displayed by the “reference
model” within a maximum time interval of 20 s. Since
the predicted hand motion is also shown by the “controlled
model”, matching the positions of the two virtual avatars
emerges as the actual aim for the user during the test.

IIT. RESULTS

The above-described procedure has been quantitatively
evaluated by means of two major metrics: the Success Rate
(SR), defined as the percentage of correctly performed tasks
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Fig. 2. Boxplot reporting the Success Rate for SNR level. The numerical
index of the SR on the x-axis indicates the corresponding SNR level.

with respect to the total number of achievable tasks, and the
Time to Complete the Task (TCT), which outlines the time
required to successfully fulfill a task. As illustrated in Fig.
2, the SR average value decreases, within a range 82-+96%,
as the noise level rises; additionally, the TCT outcomes
do confirm this performance-worsening pattern (Table I) by
highlighting larger TCT for noisier SEMG signals.

TABLE I
TCT OVER DECREASING SNR LEVELS
SNR level TCT [s]
SNRI 4.217 £ 1.535
SNR2 4.414 +1.924
SNR3 5.597 + 2.256
SNR4 5.614 4+ 2.367

IV. DISCUSSION AND CONCLUSIONS

On average, our participants have reached a TAC test SR
ranging from 82% to 96%, depending on the SNR level. An
SR of 82% corresponds to the lowest SNR, which was akin
to that found on the signals generated by the reference SMA
patient. With all due caution, this could possibly indicate
that a patient of a similar type and stage of SMA could
achieve similar results, using the same myocontrol system
while controlling the HES. Notice, moreover, that the tests
were quite short (about 20 minutes per participant), so no
learning effect whatsoever has been observable either in their
SRs or in their TCTs. It seems reasonable to claim that, if
a patient were allowed to wear and control the exoskeleton
for a longer time and across multiple sessions, he/she would
display a definite learning curve, thereby further improving
the results. Finally it is important to notice that, even if the
model training has been performed over just three different
gestures, the regression algorithm allows for the continouos
discrimination of all the intermediate positions.
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