38 research outputs found

    Titan Aerosol Analogs from Aromatic Precursors: Comparisons to Cassini CIRS Observations in the Thermal Infrared

    Get PDF
    Since Cassini's arrival at Titan, ppm levels of benzene (C6H6) as well as large positive ions, which may be polycyclic aromatic hydrocarbons (PAHs). have been detected in the atmosphere. Aromatic molecules. photolytically active in the ultraviolet, may be important in the formation of the organic aerosol comprising the Titan haze layer even when present at low mixing ratios. Yet there have not been laboratory simulations exploring the impact of these molecules as precursors to Titan's organic aerosol. Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) in the far-infrared (far-IR) between 560 and 20/cm (approx. 18 to 500 microns) and in the mid-infrared (mid-IR) between 1500 and 600/cm (approx. 7 to 17 microns) have been used to infer the vertical variations of Titan's aerosol from the surface to an altitude of 300 km in the far-IR and between 150 and 350 km in the mid-IR. Titan's aerosol has several observed emission features which cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs, including a broad far-IR feature centered approximately at 140/cm (71 microns)

    Stable Isotope Fractionation in Titan Aerosol Formation

    Get PDF
    Stable isotope ratio measurements are a powerful tool used to understand both ancient and modern planetary processes. Instruments on the Cassini- Huygens spacecraft along with ground-based observations have measured several isotope pairs, including C-13/C-12 and N-15/N-14, in Titan's atmosphere. This includes isotopic measurements of the major atmospheric species, CH4 and N2, along with HCN, HC3N, C2H2. C2H6 and C4H2. However, the isotopic fractionation of Titan's organic aerosol has not conclusively been measured and therefore the effect of aerosol formation as an isotopic fractionation pathway in Titan's atmosphere has not been considered. Laboratory studies have measured the carbon and/or nitrogen isotopic fractionation of Titan aerosol analogs. [18] found that the carbon fractionation of photochemical organic aerosol analogs are more enriched in C-13. This enrichment in the aerosol analogs is opposite of what is predicted for photochemical products by the kinetic isotope effect. Additionally, both [16] and [18] found that the nitrogen fractionation in the organic aerosol analogs are opposite of what is observed in Titan's atmospheric N2 and HCN, with the aerosol analogs being a light nitrogen sink. Here we monitor the gas phase during photochemical aerosol analog production as a function of reaction time. In a recirculation experiment, the isotopic fractionation of carbon within the gas-phase products is measured as the CH4 reservoir is depleted. This allows us to monitor the isotopic fractionation pathway during photochemical aerosol analog formation

    NH4-Smectite, a Potential Source of N Compounds (NO) in SAM Analyses

    Get PDF
    Recent detection of nitrate by Curiosity's Sample Analysis at Mars (SAM) instrument suite in Gale Crater sediments on Mars at abundances up to ~600 mg/kg indicates that nitrogen fixation processes occurred in early Martian history. But little is known about other possible N reservoirs on Mars, including those that may contain reduced forms of fixed N (i.e., NH3, NH4+) in the mantle, crust and sediments. Specifically, fixed nitrogen (i.e. NH3, NH4+, NOx or N that is chemically bound to either inorganic or organic molecules and can be released by hydrolysis to form NH3 or NH4+) is useful to terrestrial living organisms Therefore, understanding whether reduced N compounds such as NH4+ are present in surface materials is important to assess habitability in the Martian environment. While these species generally have short photochemical lifetimes, nitrogen in this form may be sequestered and stabilized in the soil by inclusion of NH4+ in certain phyllosilicates

    Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation

    Get PDF
    Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn\u27s moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near-infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton\u27s tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen-rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen- and nitrogen-rich haze materials. These Triton haze analogs have clear observable signatures in their near-infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF

    Titan Aerosol Analog Absorption Features Produced from Aromatics in the Far Infrared

    No full text
    We present results on the formation of Titan aerosol analogs produced via far-UV irradiation of five aromatic precursors: benzene, naphthalene, pyridine, quinoline and isoquinoline. This is the first reported evidence of far-IR emission features observed below 200 per cm in laboratory-created Titan aerosols. These laboratory studies were motivated by recent analyses of Cassini Composite Infrared Spectrometer (CIRS) spectra that show a broad aerosol emission feature in the far-IR spectral region centered near 140 per cm, which is unique to Titan's photochemically-produced aerosol. We find that all three of the aerosol analogs formed from nitrogen-containing aromatics have similar broad emission features near that of the observed CIRS far-IR aerosol spectral feature. In addition, the inclusion of 1.5% methane to that of trace amounts of benzene also gives rise to an aerosol with a weak far-IR emission feature located below 200 per cm

    Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    No full text
    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations

    11.12 - Clinical Psychology Responses to the Climate Crisis

    No full text
    Intervention in issues related to climate change is becoming a defined area of practice for clinical psychologists, with general competencies and a potential for specialization. Our chapter is a collaboration among several psychologists engaged in climate and environment-related research and practice. We synthesize findings and practices from climate science, environmental psychology, environmental justice, psychotherapy, health psychology, and international perspectives. The field of clinical psychology is primed to respond to the climate crisis by creatively applying knowledge of mental health and functioning and the delivery of just, culturally appropriate, and empirically supported treatments and therapies

    Adjunctive transdermal cannabidiol for adults with focal epilepsy: a randomized clinical trial.

    No full text
    Cannabidiol has shown efficacy in randomized clinical trials for drug-resistant epilepsy in specific syndromes that predominantly affect children. However, high-level evidence for the efficacy and safety of cannabidiol in the most common form of drug-resistant epilepsy in adults, focal epilepsy, is lacking. Question: What is the efficacy, safety, and tolerability of transdermally administered cannabidiol in adults with drug-resistant focal epilepsy? Findings: In a randomized, double-blind, placebo-controlled, multicenter clinical trial of 188 patients, no difference was found in seizure frequency at week 12 of the double-blind period among the placebo, 195-mg cannabidiol, and 390-mg cannabidiol treatments. The open-label extension demonstrated the long-term safety, tolerability, and acceptability of transdermal cannabidiol delivery, with a seizure reduction of at least 50% in more than half of the patients by month 6 of the trial. Meaning: Although cannabidiol did not perform significantly better than placebo in this trial, it was well tolerated and safe; future studies to assess the effect of higher doses may be warranted
    corecore