7 research outputs found

    Automation of source-artefact classification

    Get PDF
    The high sensitivities of modern radio telescopes will enable the detection of very faint astrophysical sources in the distant Universe. However, these high sensitivities also imply that calibration artefacts, which were below the noise for less sensitive instruments, will emerge above the noise and may limit the dynamic range capabilities of these instruments. Detecting faint emission will require detection thresholds close to the noise and this may cause some of the artefacts to be incorrectly detected as real emission. The current approach is to manually remove the artefacts, or set high detection thresholds in order to avoid them. The former will not be possible given the large quantities of data that these instruments will produce, and the latter results in very shallow and incomplete catalogues. This work uses the negative detection method developed by Serra et al. (2012) to distinguish artefacts from astrophysical emission in radio images. We also present a technique that automates the identification of sources subject to severe direction-dependent (DD) effects and thus allows them to be flagged for DD calibration. The negative detection approach is shown to provide high reliability and high completeness catalogues for simulated data, as well as a JVLA observation of the 3C147 field (Mitra et al., 2015). We also show that our technique correctly identifies sources that require DD calibration for datasets from the KAT-7, LOFAR, JVLA and GMRT instruments

    A Wideband Polarization Study of Cygnus A with the JVLA. I: The Observations and Data

    Full text link
    We present results from deep, wideband, high spatial and spectral resolution observations of the nearby luminous radio galaxy Cygnus A with the Jansky Very Large Array. The high surface brightness of this source enables detailed polarimetric imaging, providing images at 0.75\arcsec, spanning 2 - 18 GHz, and at 0.30\arcsec (6 - 18 GHz). The fractional polarization from 2000 independent lines of sight across the lobes decreases strongly with decreasing frequency, with the eastern lobe depolarizing at higher frequencies than the western lobe. The depolarization shows considerable structure, varying from monotonic to strongly oscillatory. The fractional polarization in general increases with increasing resolution at a given frequency, as expected. However, there are numerous lines of sight with more complicated behavior. We have fitted the 0.3\arcsec images with a simple model incorporating random, unresolved fluctuations in the cluster magnetic field to determine the high resolution, high-frequency properties of the source and the cluster. From these derived properties, we generate predicted polarization images of the source at lower frequencies, convolved to 0.75\arcsec. These predictions are remarkably consistent with the observed emission. The observations are consistent with the lower-frequency depolarization being due to unresolved fluctuations on scales \gtrsim 300 - 700 pc in the magnetic field and/or electron density superposed on a partially ordered field component. There is no indication in our data of the location of the depolarizing screen or the large-scale field, either, or both of which could be located throughout the cluster, or in a boundary region between the lobes and the cluster.Comment: 24 pages, 13 figures. The manuscript has been accepted for publication in The Astrophysical Journa

    Anomalous gas in ESO 149-G003 : a MeerKAT-16 view

    Get PDF
    ESO 149-G003 is a close-by, isolated dwarf irregular galaxy. Previous observations with the ATCA indicated the presence of anomalous neutral hydrogen (⁠HI⁠) deviating from the kinematics of a regularly rotating disc. We conducted follow-up observations with the MeerKAT radio telescope during the 16-dish Early Science programme as well as with the MeerLICHT optical telescope. Our more sensitive radio observations confirm the presence of anomalous gas in ESO 149-G003, and further confirm the formerly tentative detection of an extraplanar HI component in the galaxy. Employing a simple tilted-ring model, in which the kinematics is determined with only four parameters but including morphological asymmetries, we reproduce the galaxy’s morphology, which shows a high degree of asymmetry. By comparing our model with the observed HI⁠, we find that in our model, we cannot account for a significant (but not dominant) fraction of the gas. From the differences between our model and the observed data cube, we estimate that at least 7–8 per cent of the HI in the galaxy exhibits anomalous kinematics, while we estimate a minimum mass fraction of less than 1 per cent for the morphologically confirmed extraplanar component. We investigate a number of global scaling relations and find that, besides being gas-dominated with a neutral gas-to-stellar mass ratio of 1.7, the galaxy does not show any obvious global peculiarities. Given its isolation, as confirmed by optical observations, we conclude that the galaxy is likely currently acquiring neutral gas. It is either re-accreting gas expelled from the galaxy or accreting pristine intergalactic material.http://mnras.oxfordjournals.orghj2022Physic

    Anomalous gas in ESO 149-G003: A MeerKAT-16 view

    Get PDF
    ESO 149-G003 is a close-by, isolated dwarf irregular galaxy. Previous observations with the ATCA indicated the presence of anomalous neutral hydrogen (H I) deviating from the kinematics of a regularly rotating disc. We conducted follow-up observations with the MeerKAT radio telescope during the 16-dish Early Science programme as well as with the MeerLICHT optical telescope. Our more sensitive radio observations confirm the presence of anomalous gas in ESO 149-G003, and further confirm the formerly tentative detection of an extraplanar H I component in the galaxy. Employing a simple tilted-ring model, in which the kinematics is determined with only four parameters but including morphological asymmetries, we reproduce the galaxy's morphology, which shows a high degree of asymmetry. By comparing our model with the observed H I, we find that in our model, we cannot account for a significant (but not dominant) fraction of the gas. From the differences between our model and the observed data cube, we estimate that at least 7-8 per cent of the H I in the galaxy exhibits anomalous kinematics, while we estimate a minimum mass fraction of less than 1 per cent for the morphologically confirmed extraplanar component

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    Polarization Tomography with Stokes Parameters

    No full text
    We present a simple but powerful technique for the analysis of polarized emission from radio galaxies and other objects. It is based on the fact that images of Stokes parameters often contain considerably more information than is available in polarized intensity and angle maps. In general, however, the orientation of the Stokes parameters will not be matched to the position angles of structures in the source. Polarization tomography, the technique presented in this paper, consists of making a series of single linear Stokes parameter images, S(ρ), where each image is rotated by an angle ρ from the initial orientation of Q and U. Examination of these images, in a series of still frames or a movie, reveals often hidden patterns of polarization angles, as well as structures that were obscured by the presence of overlapping polarized emission. We provide both cartoon examples and a quick look at the complex polarized structure in Cygnus A
    corecore