11 research outputs found

    Striatonigral neurons divide into two distinct morphological-physiological phenotypes after chronic L-DOPA treatment in parkinsonian rats

    No full text
    Dendritic regression of striatal spiny projection neurons (SPNs) is a pathological hallmark of Parkinson's disease (PD). Here we investigate how chronic dopamine denervation and dopamine replacement with L-DOPA affect the morphology and physiology of direct pathway SPNs (dSPNS) in the rat striatum. We used a lentiviral vector optimized for retrograde labeling (FuG-B-GFP) to identify dSPNs in rats with 6-hydroxydopamine (6-OHDA) lesions. Changes in morphology and physiology of dSPNs were assessed through a combination of patch-clamp recordings and two photon microscopy. The 6-OHDA lesion caused a significant reduction in dSPN dendritic complexity. Following chronic L-DOPA treatment, dSPNs segregated into two equal-sized clusters. One group (here called "cluster-1"), showed sustained dendritic atrophy and a partially normalized electrophysiological phenotype. The other one ("cluster-2") exhibited dendritic regrowth and a strong reduction of intrinsic excitability. Interestingly, FosB/ΔFosB induction by L-DOPA treatment occurred preferentially in cluster-2 dSPNs. Our study demonstrates the feasibility of retrograde FuG-B-GFP labeling to study dSPNs in the rat and reveals, for the first time, that a subgroup of dSPNs shows dendritic sprouting in response to chronic L-DOPA treatment. Investigating the mechanisms and significance of this response will greatly improve our understanding of the adaptations induced by dopamine replacement therapy in PD

    Leisure boating noise as a trigger for the displacement of the bottlenose dolphins of the Cres-LoĆ inj archipelago (northern Adriatic Sea, Croatia)

    No full text
    The waters of the Cres-LoƠinj archipelago are subject to intense boat traffic related to the high number of leisure boats frequenting this area during the summer tourist season. Boat noise dominates the acoustic environment of the local bottlenose dolphin (Tursiops truncatus) population. This study investigates the spatial and temporal change in the underwater noise levels due to intense boating, and its effect on the distribution of the bottlenose dolphins. In the period 2007-2009 sea ambient noise (SAN) was sampled across ten acoustic stations. During data collection the presence of leisure boats was recorded if they were within 2. km of the sampling station. Bottlenose dolphin spatial distribution was monitored in the same period. Results showed a strong positive correlation between high SAN levels and boat presence, particularly in the tourist season. Dolphin distribution indicated significant seasonal displacements from noisy areas characterized by the intense leisure boating. © 2012 Elsevier Ltd

    Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis.

    No full text
    Disturbances in sleep/wake cycle are a common complaint of individuals with Huntington's disease (HD) and are displayed by HD mouse models. The underlying mechanisms, including the possible role of the circadian timing system, have been the topic of a number of recent studies. The (z)Q175 mouse is a knock-in model in which the human exon 1 sequence of the huntingtin gene is inserted into the mouse DNA with approximately 190 CAG repeats. Among the numerous models available, the heterozygous Q175 offers strong construct validity with a single copy of the mutation, genetic precision of the insertion and control of mutation copy number. In this review, we will summarize the evidence that this model exhibits disrupted diurnal and circadian rhythms in locomotor activity. We found overwhelming evidence for autonomic dysfunction including blunted daily rhythms in heart rate and core body temperature (CBT), reduced heart rate variability, and almost a complete failure of the sympathetic arm of the autonomic nervous system to function during the baroreceptor reflex. Mechanistically, the Q175 mouse model exhibits deficits in the neural output of the central circadian clock, the suprachiasmatic nucleus along with an enhancement of at least one type of potassium current in these neurons. Finally, we report a novel network analysis examining the phase coherence between activity, CBT, and cardiovascular measures. Such analyses found that even young Q175 mutants (heterozygous or homozygous) show coherence degradation, and suggests that loss of phase coherence is a variable that should be considered as a possible biomarker for HD

    Different Generations of Type-B Monoamine Oxidase Inhibitors in Parkinson’s Disease: From Bench to Bedside

    No full text
    corecore