24 research outputs found

    Divergent cytotoxic and metabolically stimulative functions of sigma-2 receptors: Structure-Activity Relationships of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79) Derivatives

    Get PDF
    © 2019 by the authors. Astragalus is a very interesting plant genus, well-known for its content of flavonoids, triterpenes and polysaccharides. Its secondary metabolites are described as biologically active compounds showing several activities, e.g., immunomodulating, antibacterial, antiviral and hepatoprotective. This inspired us to analyze the Bulgarian endemic A. aitosensis (Ivanisch.) to obtain deeper information about its phenolic components. We used extensive chromatographic separation of A. aitosensis extract to obtain seven phenolic compounds (1–7), which were identified using combined LC-MS and NMR spectral studies. The 1D and 2D NMR analyses and HR-MS allowed us to resolve the structures of known compounds 5–7 as isorhamnetin-3-O-robinobioside, isorhamnetin-3-O-(2,6-di-O-α-rhamno-pyranosyl-β-galactopyranoside), and alangiflavoside, respectively, and further comparison of these spectral data with available literature helped us with structural analysis of newly described flavonoid glycosides 1–4. These were described in plant source for the first time

    In vitro and in silico analysis of imatinib analogues as anti-Trypanosoma cruzi drug candidates

    Get PDF
    Chagas disease (CD) is a neglected tropical disease caused by the intracellular protozoan Trypanosoma cruzi that remains a serious public health issue affecting more than 6 million people worldwide. The available treatment includes 2 nitro derivatives, benznidazole (BZ) and nifurtimox, that lack in efficacy in the later chronic phase and when administered against the several naturally resistant parasite strains and present several side-effects, demanding new therapeutic options. One strategy is based on repurposing by testing drugs already used for other illness that may share similar targets. In this context, our previous data on imatinib (IMB) and derivatives motivated the screening of 8 new IMB analogues. Our findings showed that all except 1 were active against bloodstream trypomastigotes reaching drug concentration capable of inducing a 50% of parasite lysis (EC50) values 60) towards the proliferative forms. Physicochemical parameters as well as the absorption, distribution, metabolism, excretion and toxicity properties were predicted to be acceptable and with good chance of a favourable oral bioavailability. The promising results motivate further studies such as in vivo and combinatory assays aiming to contribute for a novel safer and effective therapy for CD

    In Vitro Antioxidant and Anti-Glycation Activity of Resveratrol and Its Novel Triester with Trolox

    No full text
    Resveratrol (RSV) is well known for its many beneficial activities, but its unfavorable physicochemical properties impair its effectiveness after systemic and topical administration; thus, several strategies have been investigated to improve RSV efficacy. With this aim, in this work, we synthesized a novel RSV triester with trolox, an analogue of vitamin E with strong antioxidant activity. The new RSV derivative (RSVTR) was assayed in vitro to evaluate its antioxidant and anti-glycation activity compared to RSV. RSVTR chemical stability was assessed at pH 2.0, 6.8, and 7.2 and different storage temperatures (5 °C, 22 °C, and 37 °C). An influence of pH stronger than that of temperature on RSVTR half-life values was pointed out, and RSVTR greatest stability was observed at pH 7.2 and 5 °C. RSVTR showed a lower antioxidant ability compared to RSV (determined by the oxygen radical absorbance capacity assay) while its anti-glycation activity (evaluated using the Maillard reaction) was significantly greater than that of RSV. The improved ability to inhibit the glycation process was attributed to a better interaction of RSVTR with albumin owing to its increased topological polar surface area value and H-bond acceptor number compared to RSV. Therefore, RSVTR could be regarded as a promising anti-glycation agent worthy of further investigations

    Structure-Activity Relationships and Therapeutic Potentials of 5-HT7 Receptor Ligands: An Update

    No full text
    Serotonin 5-HT7 receptor (5-HT7R) has been the subject of intense research efforts because of its presence in brain areas such as the hippocampus, hypothalamus, and cortex. Preclinical data link the 5-HT7R to a variety of central nervous system processes including the regulation of circadian rhythms, mood, cognition, pain processing, and mechanisms of addiction. 5-HT7R blockade has antidepressant effects and may ameliorate cognitive deficits associated with schizophrenia. 5-HT7R has been recently shown to modulate neuronal morphology, excitability, and plasticity, thus contributing to shape brain networks during development and to remodel neuronal wiring in the mature brain. Therefore, the activation of 5-HT7R has been proposed as a therapeutic approach for neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. This Perspective celebrates the silver jubilee of the discovery of 5-HT7R by providing a survey of recent studies on the medicinal chemistry of 5-HT7R ligands and on the neuropharmacology of 5-HT7R

    Solid Lipid Nanoparticles Loading Idebenone Ester with Pyroglutamic Acid: In Vitro Antioxidant Activity and In Vivo Topical Efficacy

    No full text
    Idebenone (IDE), a strong antioxidant widely investigated for the treatment of neurodegenerative diseases and skin disorders, shows low oral and topical bioavailability due to its unfavorable physico-chemical properties. In this work, to improve IDE topical effectiveness, we explored a two-steps approach: (1) we synthesized an IDE ester (IDEPCA) with pyroglutamic acid, a molecule whose hydrating effects are well known; (2) we loaded IDEPCA into solid lipid nanocarriers (SLN). We evaluated in vitro antioxidant and anti-glycation activity and in vivo hydrating effects after topical application in human volunteers from gel vehicles of IDEPCA SLN in comparison to IDE SLN. All SLN showed good technological properties (mean particle size < 25 nm, polydispersity index < 0.300, good stability). The oxygen radical absorbance capacity assay showed that IDEPCA SLN and IDE SLN had similar antioxidant activity while IDEPCA SLN were more effective in the in vitro NO scavenging assay. Both IDEPCA and IDE SLN showed the same effectiveness in inhibiting the formation of advanced glycation end products. In vivo experiments pointed out a better hydrating effect of IDEPCA SLN in comparison to IDE SLN. These results suggest that the investigated approach could be a promising strategy to obtain topical formulations with increased hydrating effects

    Heme Oxygenase Modulation Drives Ferroptosis in TNBC Cells

    No full text
    The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study’s purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO’s effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO’s implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO’s contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment

    Novel mutual prodrug of 5-fluorouracil and heme oxygenase-1 inhibitor (5-FU/HO-1 hybrid) : design and preliminary in vitro evaluation

    No full text
    In this work, the first mutual prodrug of 5-fluorouracil and heme oxygenase1 inhibitor (5-FU/HO-1 hybrid) has been designed, synthesised, and evaluated for its in vitro chemical and enzymatic hydrolysis stability. Predicted in silico physicochemical properties of the newly synthesised hybrid (3) demonstrated a drug-like profile with suitable Absorption, Distribution, Metabolism, and Excretion (ADME) properties and low toxic liabilities. Preliminary cytotoxicity evaluation towards human prostate (DU145) and lung (A549) cancer cell lines demonstrated that 3 exerted a similar effect on cell viability to that produced by the reference drug 5-FU. Among the two tested cancer cell lines, the A549 cells were more susceptible for 3. Of note, hybrid 3 also had a significantly lower cytotoxic effect on healthy human lung epithelial cells (BEAS-2B) than 5-FU. Altogether our results served as an initial proof-of-concept to develop 5-FU/HO-1 mutual prodrugs as potential novel anticancer agents

    Synthesis and Molecular Modelling Studies of New 1,3-Diaryl-5-Oxo-Proline Derivatives as Endothelin Receptor Ligands

    No full text
    The synthesis of seventeen new 1,3-diaryl-5-oxo-proline derivatives as endothelin receptor (ETR) ligands is described. The structural configuration of the new molecules was determined by analyzing selected signals in proton NMR spectra. In vitro binding assays of the human ETA and ETB receptors allowed us to identify compound 31h as a selective ETAR ligand. The molecular docking of the selected compounds and the ETA antagonist atrasentan in the ETAR homology model provided insight into the structural elements required for the affinity and the selectivity of the ETAR subtype

    Novel Tyrosine Kinase Inhibitors to Target Chronic Myeloid Leukemia

    No full text
    This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a–j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells
    corecore