328 research outputs found
Electron-attachment rates for carbon-rich molecules in protoplanetary atmospheres: the role of chemical differences
The formation of anionic species in the interstellar medium from interaction
of linear molecules containing carbon, nitrogen and hydrogen as atomic
components (polyynes) with free electrons in the environment is modelled via a
quantum treatment of the collision dynamics. The ensuing integral cross
sections are employed to obtain the corresponding attachment rates over a broad
range of temperatures for the electrons. The calculations unequivocally show
that a parametrization form often employed for such rates yields a broad range
of values that turn out to be specific for each molecular species considered,
thus excluding using a unique set for the whole class of polyynes.Comment: accepted to be published on MNRA
Neutral and ionic dopants in helium clusters: interaction forces for the and
The potential energy surface (PES) describing the interactions between
and and an extensive
study of the energies and structures of a set of small clusters,
, have been presented by us in a previous series of
publications [1-3]. In the present work we want to extend the same analysis to
the case of the excited and of the
ionized Li moiety. We thus show here calculated
interaction potentials for the two title systems and the corresponding fitting
of the computed points. For both surfaces the MP4 method with cc-pV5Z basis
sets has been used to generate an extensive range of radial/angular coordinates
of the two dimensional PES's which describe rigid rotor molecular dopants
interacting with one He partner
reply to comment on dynamics of formation of anthracene anions in molecular clouds and protoplanetary atmospheres
We discuss in some detail the implications of the suggestion made by P D Burrow and G A Gallup on the physics of anion formation and of resonant electron attachment in gas-phase anthracene molecules
ELECTRON-DRIVEN REACTIONS IN PROTO-PLANETARY ATMOSPHERES: METASTABLE ANIONS OF GASEOUS o-BENZYNE
In this paper, we present an investigation into low-energy electron scattering (E < 15 eV) processes from a specific benzene-like polyatomic target such as ortho-benzyne, o-C6H4(1?), in order to gain a better understanding of the effects that possible low-lying metastable electron-attachment states could have on its nuclear fragmentation dynamics. The current importance of the dynamical evolution of this molecule lies in the fact that o-C6H4 is considered to be relevant for the circumstellar synthesis of large polycyclic aromatic hydrocarbons (PAHs), as a precursor for C6H6 production via ion-based ring closure reaction from C2H2. Our parameter-free scattering calculations are performed within the molecular reference frame, where we obtain the metastable anionic states for the nuclear equilibrium configuration and further characterize the properties of such transient anions with respect to those found earlier for the benzene molecule. Our quantum studies indicate that o-C6H4 is a more efficient producer of compact, fairly long-lived anionic intermediates than benzene itself; hence, this should more rapidly enter the chemical reaction cycles of PAHs formation, thereby disappearing from possible direct observation as a stable anion
- …