17 research outputs found

    Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler Tissue and Speckle Tracking echocardiography study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isovolumetric acceleration (IVA) is a novel tissue Doppler parameter for the assessment of systolic function. The aim of this study was to evaluate IVA as an early parameter for the detection of right ventricular (RV) systolic dysfunction in patients with systemic sclerosis (SSc) without pulmonary hypertension.</p> <p>Methods</p> <p>22 patients and 22 gender- and age-matched healthy subjects underwent standard echocardiography with tissue Doppler imaging (TDI) and speckle tracking strain to assess RV function.</p> <p>Results</p> <p>Tricuspid annular plane systolic excursion (TAPSE) (23.2 ± 4.1 mm vs. 26.5 ± 2.9 mm, p < 0.006), peak myocardial systolic velocity (Sm) (11.6 ± 2.3 cm/s vs. 13.9 ± 2.7 cm/s, p = 0.005), isovolumetric contraction velocity (IVV) (10.3 ± 3 cm/s vs. 14.8 ± 3 cm/s, p < 0.001) and IVA (2.3 ± 0.4 m/s<sup>2 </sup>vs. 4.1 ± 0.8 m/s<sup>2</sup>, p < 0.001) were significant lower in the patient group. IVA was the best parameter to predict early systolic dysfunction with an area under the curve of 0.988.</p> <p>Conclusion</p> <p>IVA is a useful tool with high-predictive power to detect early right ventricular systolic impairment in patients with SSc and without pulmonary hypertension.</p

    Implementation of seven echocardiographic parameters of myocardial asynchrony to improve the long-term response rate of cardiac resynchronization therapy (CRT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization Therapy (CRT) is an effective therapy for chronic heart failure with beneficial hemodynamic effects leading to a reduction of morbidity and mortality. The responder rates, however, are low. There are various and contentious echocardiographic parameters of myocardial asynchrony. Patient selection by echocardiographic assessment of asynchrony is thought to improve responder rates.</p> <p>Methods</p> <p>In this small single-center pilot-study, seven established parameters of myocardial asynchrony were used to select patients for CRT: (1) interventricular electromechanical delay (IMD, cut-off ≥ 40 ms), (2) Septal-to-posterior wall motion delay (SPWMD, ≥ 130 ms), (3) maximal difference in time-to-peak velocities between any two of twelve LV segments (Ts-12 ≥ 104 ms), (4) standard deviation of time to peak myocardial velocities (Ts-12-SD, ≥ 34.4 ms), (5) difference between the septal and basal time-to-peak velocity (TDId, ≥ 60 ms), (6) left ventricular electromechanical delay (LVEMD, > 140 ms) and (7) delayed longitudinal contraction (DLC, > 2 segments).</p> <p>16 chronic heart failure patients (NYHA III–IV, LVEF < 0.35, QRS ≥ 120 ms) at least two out of seven parameters of myocardial asynchrony received cardiac resynchronization therapy (CRT-ICD). Follow-up echo examination was after 6 months. The control group was a historic group of CRT patients (n = 38) who had not been screened for echocardiographic signs of myocardial asynchrony prior to device implantation.</p> <p>Results</p> <p>Based on reverse remodeling (relative reduction of LVESV > 15%, relative increase of LVEF > 25%), the responder rate to CRT was 81.2% in patients selected for CRT according to our protocol as compared to 47.4% in the control group (p = 0.04). At baseline, there were on average 4.1 ± 1.6 positive parameters of asynchrony (follow-up: 3.7 [± 1.6] parameters positive, p = 0.52). Only the LVEMD decreased significantly after CRT (p = 0.027). The remaining parameters showed a non-significant trend towards reduction of myocardial asynchrony.</p> <p>Conclusion</p> <p>The implementation of different markers of asynchrony in the selection process for CRT improves the hemodynamic response rate to CRT.</p

    Cardiac and renal function in a large cohort of amateur marathon runners

    Get PDF
    Background Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. Methods A total of 167 participants of the BERLIN-MARATHON (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT- proBNP and cystatin C). Results Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. Conclusions The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function

    A modified echocardiographic protocol with intrinsic plausibility control to determine intraventricular asynchrony based on TDI and TSI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Established methods to determine asynchrony suffer from high intra- and interobserver variability and failed to improve patient selection for cardiac resynchronization therapy (CRT). Thus, there is a need for easy and robust approaches to reliably assess cardiac asynchrony.</p> <p>Methods and Results</p> <p>We performed echocardiography in 100 healthy subjects and 33 patients with left bundle branch block (LBBB). To detect intraventricular asynchrony, we combined two established methods, i.e., tissue synchronization imaging (TSI) and tissue Doppler imaging (TDI). The time intervals from the onset of aortic valve opening (AVO) to the peak systolic velocity (S') were measured separately in six basal segments in the apical four-, two-, and three-chamber view. Color-coded TSI served as an intrinsic plausibility control and helped to identify the correct S' measuring point in the TDI curves. Next, we identified the segment with the shortest AVO-S' interval. Since this segment most likely represents vital and intact myocardium it served as a reference for other segments. Segments were considered asynchronous when the delay between the segment in question and the reference segment was above the upper limit of normal delays derived from the control population. Intra- and interobserver variability were 7.0% and 7.7%, respectively.</p> <p>Conclusion</p> <p>Our results suggest that combination of TDI and TSI with intrinsic plausibility control improves intra- and interobserver variability and allows easy and reliable assessment of cardiac asynchrony.</p

    Single beat 3D echocardiography for the assessment of right ventricular dimension and function after endurance exercise: Intraindividual comparison with magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our study compares new single beat 3D echocardiography (sb3DE) to cardiovascular magnetic resonance imaging (CMR) for the measurement of right ventricular (RV) dimension and function immediately after a 30 km run. This is to validate sb3DE against the "gold standard" CMR and to bring new insights into acute changes of RV dimension and function after endurance exercise.</p> <p>Methods</p> <p>21 non-elite male marathon runners were examined by sb3DE (Siemens ACUSON SC2000, matrix transducer 4Z1c, volume rates 10-29/s), CMR (Siemens Magnetom Avanto, 1,5 Tesla) and blood tests before and immediately after each athlete ran 30 km. The runners were not allowed to rehydrate after the race. The order of sb3DE and CMR examination was randomized.</p> <p>Results</p> <p>Sb3DE for the acquisition of RV dimension and function was feasible in all subjects. The decrease in mean body weight and the significant increase in hematocrit indicated dehydration. RV dimensions measured by CMR were consistently larger than measured by sb3DE.</p> <p>Neither sb3DE nor CMR showed a significant difference in the RV ejection fraction before and after exercise. CMR demonstrated a significant decrease in RV dimensions. Measured by sb3DE, this decrease of RV volumes was not significant.</p> <p>Conclusion</p> <p>First, both methods agree well in the acquisition of systolic RV function. The dimensions of the RV measured by CMR are larger than measured by sb3DE. After exercise, the RV volumes decrease significantly when measured by CMR compared to baseline.</p> <p>Second, endurance exercise seems not to induce acute RV dysfunction in athletes without rehydration.</p

    Does contrast echocardiography induce increases in markers of myocardial necrosis, inflammation and oxidative stress suggesting myocardial injury?

    Get PDF
    BACKGROUND: Contrast echocardiography is a precise tool for the non-invasive assessment of myocardial function and perfusion. Side effects of contrast echocardiography resulting from contrast-agent induced myocardial micro-lesions have been found in animals. The goal of this study is to measure markers of myocardial necrosis, inflammation and oxidative stress in humans to evaluate potential side-effects of contrast echocardiography. METHODS: 20 patients who underwent contrast echocardiography with Optison as the contrast medium were investigated. To evaluate myocardial micro-necrosis, inflammation and oxidative stress, cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, -8 and thiobarbituric acid reactive substances (TBARS) were measured at baseline and at 2, 4, 8 and 24 hours after contrast echocardiography. RESULTS: At baseline, 50% of the patients had cTnI and TBARS values outside the reference range. TNF-α, IL-6, IL-8 levels were within the reference range. Patients with cTnI above the RR clustered to significantly higher levels of TNF-α and IL-6. After contrast echocardiography, no statistically significant increase of cTnI, cytokines and TBARS was found. However, for nearly 50% of the patients, the intra-individual cTnI kinetics crossed the critical difference (threefold of methodical variation) which indicates a marker increase. This was neither predicted by the baseline levels of the cytokines nor the markers of oxidative stress. CONCLUSION: There are no clinically relevant increases in serum markers for micro-necrosis, inflammation and oxidative stress in humans after contrast echocardiography. Future studies have to address whether cTnI increase in some patients represent a subset with increased risk for side effects after contrast echocardiography
    corecore