16 research outputs found

    The connexin mimetic peptide Gap27 and Cx43-Knockdown reveal differential roles for Connexin43 in wound closure events in skin model systems

    Get PDF
    In the epidermis, remodelling of Connexin43 is a key event in wound closure. However, controversy between the role of connexin channel and non-channel functions exist. We compared the impact of SiRNA targeted to Connexin43 and the connexin mimetic peptide Gap27 on scrape wound closure rates and hemichannel signalling in adult keratinocytes (AK) and fibroblasts sourced from juvenile foreskin (JFF), human neonatal fibroblasts (HNDF) and adult dermal tissue (ADF). The impact of these agents, following 24 h exposure, on (encoding Connexin43), and gene expression, and Connexin43 and pSmad3 protein expression levels, were examined by qPCR and Western Blot respectively. In all cell types Gap27 (100-100 μM) attenuated hemichannel activity. In AK and JFF cells, Gap27 (100 nM-100 μM) enhanced scrape wound closure rates by ~50% but did not influence movement in HNDF or ADF cells. In both JF and AK cells, exposure to Gap27 for 24 h reduced the level of Cx43 protein expression but did not affect the level in ADF and HNDF cells. Connexin43-SiRNA enhanced scrape wound closure in all the cell types under investigation. In HDNF and ADF, Connexin43-SiRNA enhanced cell proliferation rates, with enhanced proliferation also observed following exposure of HDNF to Gap27. By contrast, in JFF and AK cells no changes in proliferation occurred. In JFF cells, Connexin43-SiRNA enhanced levels and in JFF and ADF cells both Connexin43-SiRNA and Gap27 enhanced pSmad3 protein expression levels. We conclude that Connexin43 signalling plays an important role in cell migration in keratinocytes and foreskin derived fibroblasts, however, different pathways are evoked and in dermal derived adult and neonatal fibroblasts, inhibition of Connexin43 signalling plays a more significant role in regulating cell proliferation than cell migration

    Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Get PDF
    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays

    Polarisation and functional characterisation of hepatocytes derived from human embryonic and mesenchymal stem cells

    Get PDF
    Adult hepatocytes are polarised with their apical and basolateral membranes separated from neighbouring cells by tight junction proteins. Although efficient differentiation of pluripotent stem cells to hepatocytes has been achieved, the formation of proper polarisation in these cells has not been thoroughly investigated. In the present study, human embryonic stem cells (hESCs) and human mesenchymal stem cells (hMSCs) were differentiated to hepatocyte-like cells and the derived hepatocytes were characterised for mature hepatocyte markers. The secretion of hepatic proteins, expression of hepatic genes and the functional hepatic polarisation of stem cell-derived hepatocytes, foetal hepatocytes and the HepG2 hepatic cell line were evaluated and the different lines were compared. The results indicate that hESC-derived hepatocytes are phenotypically more robust and functionally more efficient compared with the hMSC-derived hepatocytes, suggesting their suitability for toxicity studies

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    DC: Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction

    No full text
    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays

    Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism

    Get PDF
    AbstractMaintaining stable differentiated somatic cell function in culture is essential to a range of biological endeavors. However, current technologies, employing, for example, primary hepatic cell culture (essential to the development of a bio-artificial liver and improved drug and toxicology testing), are limited by supply, expense, and functional instability even on biological cell culture substrata. As such, novel biologically active substrates manufacturable to GMP standards have the potential to improve cell culture-based assay applications. Currently hepatic endoderm (HE) generated from pluripotent stem cells is a genotypically diverse, cheap, and stable source of “hepatocytes”; however, HE routine applications are limited due to phenotypic instability in culture. Therefore a manufacturable subcellular matrix capable of supporting long-term differentiated cell function would represent a step forward in developing scalable and phenotypically stable hESC-derived hepatocytes. Adopting an unbiased approach we screened polymer microarrays and identified a polyurethane matrix which promoted HE viability, hepatocellular gene expression, drug-inducible metabolism, and function. Moreover, the polyurethane supported, when coated on a clinically approved bio-artificial liver matrix, long-term hepatocyte function and growth. In conclusion, our data suggest that an unbiased screening approach can identify cell culture substrate(s) that enhance the phenotypic stability of primary and stem cell-derived cell resources
    corecore