
The connexin mimetic peptide Gap27 and Cx43-Knockdown reveal differential roles for
Connexin43 in wound closure events in skin model systems
Faniku, Chrysovalantou; O'Shaughnessy, Erin; Lorraine, Claire; Johnstone, Scott R.;
Graham, Annette; Greenhough, Sebastian; Martin, Patricia E.M.
Published in:
International Journal of Molecular Sciences

DOI:
10.3390/ijms19020604

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication in ResearchOnline

Citation for published version (Harvard):
Faniku, C, O'Shaughnessy, E, Lorraine, C, Johnstone, SR, Graham, A, Greenhough, S & Martin, PEM 2018,
'The connexin mimetic peptide Gap27 and Cx43-Knockdown reveal differential roles for Connexin43 in wound
closure events in skin model systems', International Journal of Molecular Sciences , vol. 19, no. 2, 604.
https://doi.org/10.3390/ijms19020604

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

https://doi.org/10.3390/ijms19020604
https://researchonline.gcu.ac.uk/en/publications/ff570ed8-0fa6-4c6c-b5a3-a442059c8958
https://doi.org/10.3390/ijms19020604


 International Journal of 

Molecular Sciences

Article

The Connexin Mimetic Peptide Gap27 and
Cx43-Knockdown Reveal Differential Roles for
Connexin43 in Wound Closure Events in Skin
Model Systems

Chrysovalantou Faniku 1, Erin O’Shaughnessy 1, Claire Lorraine 1, Scott R. Johnstone 1,2,3,
Annette Graham 1, Sebastian Greenhough 1,† and Patricia E. M. Martin 1,*

1 Department of Life Sciences, School of Health and Life Sciences,
Glasgow Caledonian University, Glasgow G4 0BA, UK; Chrysovalantou.Faniku@gcu.ac.uk (C.F.);
Erin.OShaughnessy@gcu.ac.uk (E.O.); clairelorraine@hotmail.co.uk (C.L.); srj6n@eservices.virginia.edu (S.R.J.);
ann.graham@gcu.ac.uk (A.G.); S.Greenhough@beatson.gla.ac.uk (S.G.)

2 Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine,
P.O. Box 801394, Charlottesville, VA 22908, USA

3 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences,
University of Glasgow, Glasgow G12 8TT, UK

* Correspondence: patricia.martin@gcu.ac.uk; Tel.: +44-141-331-3726
† Current Address: Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden,

Glasgow G61 1BD, UK

Received: 19 January 2018; Accepted: 9 February 2018; Published: 18 February 2018

Abstract: In the epidermis, remodelling of Connexin43 is a key event in wound closure. However,
controversy between the role of connexin channel and non-channel functions exist. We compared
the impact of SiRNA targeted to Connexin43 and the connexin mimetic peptide Gap27 on scrape
wound closure rates and hemichannel signalling in adult keratinocytes (AK) and fibroblasts sourced
from juvenile foreskin (JFF), human neonatal fibroblasts (HNDF) and adult dermal tissue (ADF).
The impact of these agents, following 24 h exposure, on GJA1 (encoding Connexin43), Ki67 and
TGF-β1 gene expression, and Connexin43 and pSmad3 protein expression levels, were examined by
qPCR and Western Blot respectively. In all cell types Gap27 (100 nM–100 µM) attenuated hemichannel
activity. In AK and JFF cells, Gap27 (100 nM–100 µM) enhanced scrape wound closure rates by ~50%
but did not influence movement in HNDF or ADF cells. In both JF and AK cells, exposure to Gap27
for 24 h reduced the level of Cx43 protein expression but did not affect the level in ADF and HNDF
cells. Connexin43-SiRNA enhanced scrape wound closure in all the cell types under investigation.
In HDNF and ADF, Connexin43-SiRNA enhanced cell proliferation rates, with enhanced proliferation
also observed following exposure of HDNF to Gap27. By contrast, in JFF and AK cells no changes
in proliferation occurred. In JFF cells, Connexin43-SiRNA enhanced TGF-β1 levels and in JFF
and ADF cells both Connexin43-SiRNA and Gap27 enhanced pSmad3 protein expression levels.
We conclude that Connexin43 signalling plays an important role in cell migration in keratinocytes
and foreskin derived fibroblasts, however, different pathways are evoked and in dermal derived
adult and neonatal fibroblasts, inhibition of Connexin43 signalling plays a more significant role in
regulating cell proliferation than cell migration.

Keywords: wound healing; connexin mimetic peptide; connexin hemichannel; cell migration; SiRNA

1. Introduction

Connexin43 (Cx43) is expressed in nearly every tissue in the body where it forms hemichannels
and intercellular gap junctions and plays diverse roles in coordinating cellular activities [1].
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The connexin mimetic peptide (CMP) Gap27, targeted to the SRPTEKTIFFI sequence (amino acids
204–214) on the second extracellular loop of Cx43 is a versatile inhibitor of connexin-mediated
communication (CMC) in tissue networks [2–4]. Early investigations with these peptides by Evans,
Griffiths and colleagues [5–8] led to advancement of understanding of the role of connexins in
the vasculature and identification of heterocellular communication at the myoendothelial gap
junction [9,10]. Other studies employing Gap27 in excitable tissue networks have identified the
role of connexins in the coordination of cardiomyocyte activities and calcium wave propagation [11,12],
at neuronal synapses and more recently in pathological processes such as epilepsy [13]. In non-excitable
tissues, Gap27 blocks the passive exchange of small gap junction permeable dyes such as calcein AM
and determined a role for intercellular communication during transendothelial migration [14,15].

Many of the ”acute” studies using CMPs have provided evidence for connexin channel signalling
in coordinating cellular activities [2]. However, connexins also have reported ”non-channel” functions
and controversy exists in longer term studies as to whether channel or non-channel activities play
key roles in events such as cell adhesion and migration [16]. This is no less evident in the skin
where dynamic changes in connexin expression occur during wound healing [17–19]. Antisense
oligonucleotides targeted to Cx43 provided the first evidence that connexin based therapies could
improve wound healing and resolve inflammation [18,20,21]. Gap27 and other connexin mimetic
peptides targeted to the carboxyl terminal domain of Cx43 (such as αCT-1) also improved cell migration
rates in 2D and 3D organotypic skin wound model systems [22–25]. In previous studies [22,23],
we determined that while Gap27 enhanced migration rates in keratinocytes and fibroblasts isolated
from juvenile foreskin discards it was less effective in fibroblasts isolated from adult dermal explants.

In the present work we compared the effect of Gap27 and SiRNA targeted to Cx43, on cell
migration in adult keratinocytes (AK) and adult dermal (ADF), juvenile foreskin (JFF) and neonatal
foreskin (HDNF) derived fibroblasts. Our findings provide new insights into the effects of Cx43
channel inhibition versus Cx43 gene expression on cell migration, and our results also show that the
response of such behaviour varies between cell types (keratinocyte versus fibroblast) and between
cells of the same type (skin fibroblasts) but of different tissue origins.

2. Results

2.1. The Impact of Gap27 on Cell Migration Rates in Juvenile Foreskin Fibroblasts

Previously we determined that Gap27 inhibits CMC and enhanced scrape wound closure in
fibroblasts and keratinocytes derived from juvenile foreskin explants [22,24]. To further explore the
effect of 100 µM Gap27 on cell motility, JFF cells were subject to time-lapse microscopy and images
captured every 15 min over a 48 h migration period. The speed of cell movement in non-treated
and Gap27 (100 µM) treated cells was analysed: Gap27 treated cells reached 50% scrape closure in
approximately half the time taken by non-treated cells (Figure 1A).

Image trajectory analysis was performed to elucidate if the differences observed in JFF scrape
closure ± Gap27 were due to variation in cell directionality or speed of movement. Graphical
representation of the XY co-ordinate data obtained from tracking the movement of 18 individual
cells for each set of JFF images (±100 µM Gap27) illustrated differences in cell migration between the
control and peptide treated cells, most noticeably an increase in distance travelled by the Gap27 treated
cells, compared to controls, into the scraped area. The data also suggest that the majority of peptide
treated cells migrate in straighter lines towards the scraped area compared to controls which had a
more lateral movement. Cell tracking data determined that Gap27 treatment in JFF cells significantly
increased the average cell velocity over 48 h by 2.5 µm/h compared to controls; the average velocity
was 0.23± 0.003 µm/min (13.8 µm/h) in control cells and 0.27± 0.004 µm/min (16.3 µm/h) in peptide
treated cells (Figure 1B). To further explore these differences, data sets of the rate of cell movement at
the leading edge (Figure 1C), 0–50 µm (Figure 1D) and 50–100 µm (Figure 1E) behind the wound edge
were analysed. At the leading wound edge, the migration of control and peptide treated cells were
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comparable (Figure 1C). However, in cells located 0–50 µm behind the wound edge cell migration
rates in Gap27 was faster, with the greatest difference in velocity occurring 50–100 µm behind the
wound edge, where the Gap27 treated cells migrated at a rate of 0.273 ± 0.006 µm/min compared to
the non-treated cells that migrated at rates of 0.214 ± 0.004 µm/min (Figure 1D,E). These data indicate
that during scrape wound closure in JFF cell monolayers, cell velocity is greater in wound edge cells
compared to cells behind the wound edge. However, Gap27 treatment enhances the scrape wound
closure in JFF cell monolayers in vitro by increasing cell velocity in cells behind the wound edge.
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While both CMPs and antisense Cx43 knockdown strategies are widely accepted to enhance 
wound closure rates [20,22,26], a direct comparison of their effects on cell migration events has not 
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Gap27 determined that the peptide effectively enhanced scrape wound closure rates in primary adult 

Figure 1. Gap27 (100 µM) influences the speed of Juvenile Foreskin Fibroblasts (JFF) cell migration.
(A) time-lapse migration data of JFF cells; (B) Average cell velocity of JFF cells; (C) Cell velocity of JFF
cells at the leading edge of the scrape wound; (D) Cell velocity of JFF cells 0–50 µm behind the wound
edge; (E) Cell velocity of JFF cells 50–100 µm behind the wound edge. n = 18 cells were tracked in total
with 6 cells from each specific area. *** p < 0.005.

2.2. Impact of Gap27 and SiRNA Targeted to Cx43 on Cell Migration in Skin Model Systems

While both CMPs and antisense Cx43 knockdown strategies are widely accepted to enhance
wound closure rates [20,22,26], a direct comparison of their effects on cell migration events has not
been reported. We thus explored the impact of Gap27 and SiRNA targeted to Cx43 on scrape wound
closure rates in keratinocytes and fibroblasts isolated from adult skin biopsies and compared this
to cells derived from juvenile foreskin and neonatal human fibroblasts. Initially a dose response of
Gap27 determined that the peptide effectively enhanced scrape wound closure rates in primary adult
keratinocytes at 100 nM–100 µM, but was without effect at lower doses (Figure 2A). In these AK
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cells, SiRNA targeted to Cx43 significantly enhanced the rate of scrape wound closure (Figure 2B).
In JFF cells, 100 nM Gap27 and SiRNA targeted to Cx43 significantly enhanced the rate of scrape
wound closure with 50% closure rates more than two times faster than non-treated samples (Figure 2C).
Multiple studies performed in adult fibroblasts demonstrated that 100 nM–100 µM Gap27 had limited
impact on cell migration responses (Figure 2D); by contrast, significant increase in 50% closure rates
occurred in adult fibroblasts transfected with SiRNA targeted to Cx43, compared with the SiRNA
control (Figure 2D).

To further compare the efficacy of Gap27 on fibroblast cell migration events, scrape wound assays
were also performed using commercially sourced human neonatal dermal fibroblasts. Treatment
with Gap27 was ineffective in enhancing migration responses at concentrations of 100 nM or 100 µM
(Figure 2E,F). By contrast, inhibition of Cx43 expression by transfecting the cells with SiRNA targeted to
Cx43 significantly improved cell migration rates suggesting a ”non-channel” role for Cx43 in migration
of these neonatal fibroblasts (Figure 2E). We also explored the migration responses of HNDF cells on
various extracellular matrix components in the presence and absence of 100 µM Gap27. Although the
cells migrated slightly faster on both fibronectin and collagen matrices, Gap27 still did not enhance
cell migration rates [27].
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Figure 2. Gap27 and SiRNA targeted to Cx43 have differential effects on scrape wound closure rates in
skin cells. Dose response of Gap27 in AK cells (A); SiRNA targeted to Cx43 and 100 nM Gap27 enhance
scrape wound closure in AK (B) and JFF cells (C); Gap27 does not enhance cell migration rates in ADF
or HNDF cells (D–F). n = 3, ** p < 0.01; *** p < 0.005.

2.3. Gap27 Attenuates Hemichannel Signalling at Lower Doses than Gap Junction Coupling

In previous studies, microinjection analysis with Alexa 488 determined that Gap27 effectively
inhibits gap junction coupling at concentrations of 50 µM in keratinocytes and HeLa43 cells [23,24].
We also previously reported that Gap27 inhibits ATP release in both keratinocytes and fibroblasts
isolated from juvenile foreskin tissue discards at concentrations of 100 µM [22,23,28]. In view of
the stark contrast in the impact of Gap27 on cell migration rates between the different cell types,
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we further explored the ability of Gap27 to attenuate hemichannel activity. In all the cell types, Gap27
effectively inhibited ATP release in a dose responsive manner, effective at 10–100 µM concentrations
(Figure 3A–D). This data further suggests that in the ADF and HNDF, hemichannel signalling events
are unlikely to be involved in controlling cell migration.
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Figure 3. Gap27 inhibits hemichannel signalling. JFF cells (A); Keratinocytes (B); ADF (C) and HNDF
(D) cells were exposed to a dose response of Gap27 and ATP release assays performed following
calcium deprivation. Data are presented at the Fold change in ATP release over control cells that were
not subject to calcium challenge. n = 3, *** p < 0.005, ** p < 0.01.

2.4. The Impact of Gap27 and SiRNA Targeted to Cx43 on Gene and Protein Expression Profiles in Skin
Model Systems

At the end point of the cell migration assays, RNA and protein were extracted and subject
to qPCR and Western blot analysis to determine any significant changes in gene and or protein
expression profiles.

SiRNA targeted to Cx43 reduced the level of Cx43 gene and protein expression by >50% in JFF,
AK, ADF and HNDF cells (Figure 4A–D). Exposure to 100 nM Gap27 for up to 24 h reduced Cx43 gene
expression levels in JFF cells but had limited impact on Cx43 gene expression levels in the other cell
types (Figure 4A–D (panel 1)). In ADF and HNDF cells, 100 nM Gap27 did not influence the level of
Cx43 protein expression (Figure 4C,D (panels 2 and 3)). However, in JFF cells exposure to 100 nM
Gap27 for 24 h caused a >2-fold reduction in the level of Cx43 protein expression and a similar trend,
although not as pronounced, was observed in AK cells (Figure 4A,B (panels 2 and 3)).
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Figure 4. The impact of Gap27 and SiRNA targeted to Cx43 on gene expression. At the end of scrape
wound closure assays, RNA and protein was harvested from cells and subject to real time PCR or
Western blot analysis to determine levels of Cx43 expression. JFF (A); AK (B); AF (C) and HNDF (D).
Panel 1 represents changes in gene expression, Panel 2 represents a typical Western blot, Panel 3
represents densitometric analysis of three Western blots. n = 3, *** p < 0.005, ** p < 0.01 a threshold of
two fold increase or decrease in expression was considered significant.

2.5. The Impact of Gap27 and SiRNA Targeted to Cx43 on Cell Proliferation, TGF-β1 and SMAD3
Signalling Pathways

To determine if the differences observed in cell migration responses between the various cell
groups were related to changes in cell proliferation, the level of Ki67 gene expression in each of the
cell types and treatment groups was determined. In JFF and AK cells, none of the treatments evoked
a greater than two-fold increase in the level of Ki67 gene expression (Figure 5A, AK and JFF panels).
By contrast, in ADF cells a 10-fold increase in Ki67 gene expression was observed in cells exposed to
SiRNA targeted to Cx43 but not in those exposed to Gap27 (Figure 5A, ADF panel). In HNDF cells,
proliferation was dramatically enhanced in all treatment groups (5-10 fold) compared to non-treated
cells (Figure 5A, HNDF panel).
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Transforming growth factor β1 (TGF-β1) is a major transcription factor regulating cell signalling
events involved in migration. The level of TGF-β1 gene expression was enhanced ~3–4 fold in JFF cells
following knockdown of Cx43 gene expression and following treatment with 100 nM Gap27 for 24 h
(Figure 5B, JFF panel). By contrast, in AK, AF and HNDF cells, Gap27 and SiRNA targeted to Cx43
had limited impact on the level of TGF-β1 gene expression levels (Figure 5B) at the 24 h time point.
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Figure 5. The impact of Gap27 and SiRNA targeted to Cx43 on Ki67 and TGF-β1 gene expression.
At the end of scrape wound closure assays RNA was harvested from cells and subject to real time
PCR analysis to determine changes in gene expression of (A) Ki67 and (B) TGF-β1 n = 3, *** p < 0.005,
** p < 0.01 a threshold of two fold increase or decrease in gene expression was considered significant.

Finally, previous reports identified that phosphorylation of Smad3 is associated with exposure
of mucosal derived fibroblasts to Gap27 [29]. Probing the Western blots with an antibody targeting
pSmad3 identified that in JFF and ADF cells exposure to SiRNA targeted to Cx43 and 100 nM Gap27
for 24 h enhanced the level of pSmad3 expression (Figure 6A,C). By contrast, in HNDF and AK cells
the level remained constant (Figure 6B,D), further suggesting differential signalling pathways are
triggered in different compartments of the skin following remodelling of Cx43.

A summary of the combined data is presented in Table 1.

Table 1. Summary of the effect of 100 nM Gap27 (Gap27) and Cx43-SiRNA (SiRNA) on cellular events
related to wound closure in JFF, AK, ADF and HDNF cells. Hemichannel activity was monitored
following 90 min exposure to peptide and 15 min challenge with Calcium free media. All other assays
were recorded 24 h post scrape wounding in the presence or absence of 100 nM Gap27 or Cx43-SiRNA.
n = 3 in all cases. ND: not determined; NE: no effect; ↑ enhanced effect; ↓ inhibitory effect. For details
of experimental design and statistics see text and figures.

Cell Type Treatment HC Migration Cx43 Protein Proliferation TGF-β1 pSmad3

JFF
SiRNA ND ↑ ↓ NE ↑ ↑
Gap27 ↓ ↑ ↓ NE ↑ ↑

AK
SiRNA ND ↑ ↓ NE NE NE
Gap27 ↓ ↑ ↓ NE NE NE

ADF
SiRNA ND ↑ ↓ ↑ ↑ ↑
Gap27 ↓ NE NE NE NE ↑

HDNF
SiRNA ND ↑ ↓ ↑ NE NE
Gap27 ↓ NE NE ↑ NE NE
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Figure 6. The impact of Gap27 and SiRNA targeted to Cx43 on pSmad3 expression. At the end of scrape,
wound closure assays protein was harvested from cells and subject to Western blot analysis. Blots were
probed with an antibody targeted to pSmad3 and GAPDH. Representative blots are presented for each
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3. Discussion

In the present study we compared the effect of Gap27 and SiRNA targeted to Cx43 on scrape
wound closure rates in fibroblasts derived from neonatal, juvenile foreskin and adult dermal explants
and matched adult keratinocytes. Both of these reagents enhanced scrape wound closure in the JFF
cells and adult keratinocytes with Gap27 enhancing cell migration rates at concentrations of 100 nM,
reflecting the dose of peptide that inhibited hemichannel signalling and supporting the concept that
ATP release via hemichannels is required for keratinocyte galvanotaxis [30]. By contrast, in the AF
and HNDF cells, SiRNA targeted to Cx43 enhanced scrape wound closure, but treatment with Gap27
was without effect, extending studies where we reported limited effects of Gap27 on adult fibroblast
migration rates [22,23]. Profound differences in cell migration, proliferation and the TGF-β1/pSmad3
signalling axis occurred between the cells isolated from different skin compartments. The data provides
new insights into the controversy surrounding Cx43 channel versus non-channel functions in cell
migration and wound repair responses [16] and suggests that inhibition of hemichannel signalling
alone is insufficient to modify cell migration events in adult dermal fibroblasts.

Within epithelial tissues, including the skin and cornea, it is widely accepted that downregulation
of Cx43 is favourable to wound closure, as reported in the skin of connexin-deficient mice [19] and
by the development of Cx43 anti-sense oligonucleotides, that have proven effective in rat models
and in human clinical trials [18,26,31,32]. Other studies by Gourdie and colleagues used a peptide
targeting the carboxyl tail of Cx43 and its binding site with the PDZ domain to improve wound healing,
resolve inflammation and reduce scarring in rat models and recently in human clinical trials [33–35].
Studies using Pep5, based on the Gap27 sequence, have shown remarkable effects on tissue repair
and inflammation in the retina, cornea and spinal cord [36–38]. Recent studies using Gap27 have also
shown that this peptide is effective in improving rabbit corneal wound healing [39] and in primary
human gingival fibroblasts, isolated from donors aged 26–48 years of age [29]. A further peptide
TAT-Gap19, has also recently been reported to enhance scrape wound closure of human gingival
fibroblasts [40]. TAT-Gap19, targeted to the intracellular loop of Cx43, was designed as a cell permeant
peptide and has been extensively used to characterise interactions between the intracellular loop of
Cx43 and the carboxy terminal tail [41,42]. This peptide effectively blocks hemichannel activity but has
no effect on gap junction coupling, in contrast to Gap27 which blocks all forms of connexin mediated
communication. Thus, inhibiting Cx43 gene expression and blocking channel function both have a
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positive influence on wound closure events; however, comparisons of the mechanisms underlying the
modes of action of these different means of remodelling Cx43 remains unresolved.

In the present study we have identified profound differences in wound healing events in skin
cells isolated from different sources, and between adult epidermal and stromal derived fibroblasts,
which relate to whether Cx43 channel function or gene expression is regulated.

In the case of JFF cells, derived from juvenile foreskin discards (a thin layer of tissue) and in adult
keratinocytes, both Gap27 and SiRNA targeted to Cx43 enhanced scrape wound closure. Further, in
both of these cell types at the end point of the migration time course, neither knockdown of Cx43
expression or inhibition of channel function by Gap27 had any effect on cell proliferation as monitored
by Ki67 gene expression. This re-enforces our previous findings where irradiated juvenile fibroblasts
were used and Gap27 effectively enhanced wound closure [22]. Hence in JFF cells and keratinocytes
proliferation factors are not involved in the enhanced cell migration response, suggesting hemichannel
signalling plays an important role in co-ordinating cellular responses [30,40].

By contrast, in ADF and HNDF while SiRNA targeted to Cx43 accelerated the rates of scrape
wound closure, exposure to Gap27 had a limited effect on cell migration rates. In AF cells, Gap27
did not influence the gene expression of Ki67 but decreasing Cx43 gene expression enhanced cell
proliferation. In the HNDF cells, exposure to Gap27 and to SiRNA targeted to Cx43 enhanced cell
proliferation, but only SiRNA targeted to Cx43 enhanced cell migration rates. It is also noteworthy
that at the end point of the migration assays, while SiRNA targeted to Cx43 reduced Cx43 gene
and protein expression in all cell types by >50% exposure to Gap27 had no effect on Cx43 protein
levels in AF cells. By contrast, in the JFF and AK cells Gap27 reduced the level of Cx43 protein
expression by ~50%, however it had a limited effect on Cx43 gene expression, suggesting Cx43 changes
were post-transcriptional. A similar effect was also observed in adult human gingival fibroblasts
where Gap27 also enhanced wound closure rates [29]. Studies using mouse NIH3T3 fibroblasts also
determined that Gap27 reduced Cx43 protein expression in line with our observations in JFF cells [43].
Studies in our lab also determined that Gap27 improved cell migration rates in primary neonatal
mouse fibroblasts [27] and keratinocytes [44]. Taken together, this data suggests that in human adult
dermal fibroblasts and neonatal fibroblasts, non-channel functions of Cx43 may be more important
than acute hemichannel signalling in regulating cell migratory behaviour.

Previously, we identified changes in expression of a panel of genes associated with extracellular
matrix (ECM) deposition in JFF cells following exposure to Gap27, including metalloproteinase 9
(MMP-9) and connective tissue growth factor (CTGF) [23]. Several other reports have indicated a link
between altered Cx43 expression and ECM regulation, including in fibroblasts isolated from a patient
harbouring a non-functional Cx43 mutation associated with the Cx-channelopathy oculodentodigital
dysplasia [45]. Modifying Cx43 expression or function by antisense oligonucleotides and peptide αCTI
have also been associated with alterations in ECM deposition [20,33]. Further studies by Tarzemany et
al. systematically reviewed the impact of Gap27 and more recently TAT-Gap19 on gene expression and
cell signalling pathways involved in wound closure events in human adult gingival fibroblasts [29,40].
Both peptides effectively enhanced wound closure rates and gene array analysis after 24 h indicated
changes in expression of a panel of genes related to ECM deposition including a number of MMP
proteins and CTGF, in agreement with our previous studies on JFF cells [23].

The TGF-β signalling pathway is important in controlling cell migration events, and a number of
studies have suggested links between TGF-β1 and Cx43 expression in wound healing scenarios [20,46].
Treatment with either Gap27 or SiRNA targeted to Cx43 enhanced the gene expression of TGF-β1 in
JFF cells, but had little impact following 24 h exposure to these reagents in the adult keratinocytes
and fibroblasts. However, it remains possible that expression of TGF-β1 is transiently induced at
earlier time points, since TGF-β1 has been reported to stimulate chemotactic migration of human
fibroblasts [47].

The TGF-β/Smad3 signalling axis plays an important role in cell migration events, and has been
linked with Cx43 expression. In line with this in both JFF and ADF cells, levels of pSmad3 were
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increased following 24 h exposure to Gap27 and SiRNA targeted to Cx43. A profound increase in
pSmad3 was also reported in gingival fibroblasts exposed to Gap27 for 24 h [29]. Smad3 and the
carboxyl terminal tail of Cx43 both compete for a similar ‘microtubule binding domain’ [48]. Thus,
alteration in Cx43 expression levels or function may modify the interaction. Upon translocation to the
nucleus, Smad3 is phosphorylated to pSmad3 and exerts transcriptional control on a range of genes
involved in regulation of inflammation, cell proliferation and re-epithelisation in both positive and
negative tissue-specific ways. Given the diverse pathways that pSmad3 can regulate, it is highly likely
that in the ADF cells, where Gap27 did not influence cell migration, other key cellular events may be
affected. Although no evidence of induction of pSmad3 expression was observed in the keratinocytes,
a host of other signalling pathways including the ERK1/2 and JNK pathways may be influenced [49]
and this is subject to further investigation. In the present studies, the influence of modulation of Cx43
was assessed in monocultures. In the future it will be important to exploit our 3D organotypic models
as it is well established that keratinocytes and fibroblasts can influence responses of adjacent cells as
part of a coordinated tissue event [50].

4. Materials and Methods

4.1. Cell Culture

Primary juvenile human dermal fibroblasts (JFF cells) were derived from paediatric foreskins
discarded at surgery following informed consent with ethical approval by Yorkhill Hospital Trust
Research Ethics Committee, Glasgow, or were kindly gifted by Prof J Brandner, University Hamburg,
with their use approved by the ethics committee of the Aerztekammer Hamburg (060900) as
previously described [22]. Human neonatal dermal fibroblasts (HNDF) were sourced from Invitrogen
(Cat No.: C0045C, Paisley, UK) and human adult dermal fibroblasts (AF) and keratinocytes (AK) were
obtained from the GCU Skin Research Tissue Bank, which has NHS and GCU research ethical approval
(NHS REC Ref 16/ES/0069). Fibroblasts and keratinocytes were isolated from tissue explants and
cultured as previously described [22,24]. All cells were maintained at 37 ◦C, 5% CO2. Monolayers of
all fibroblasts were maintained in DMEM (Lonza, Wokingham, UK) supplemented with 10% (v/v)
foetal calf serum, 2 mM glutamine, 50 Units/mL penicillin/streptomycin (Lonza, Wokingham, UK),
hereafter termed ”complete” DMEM (cDMEM). Keratinocytes were maintained in EPILIFE medium
as previously described [51] (Thermo Fisher, Paisley, UK). Cells were seeded at appropriate densities
on 24-well plates for ATP assays (~0.5 × 105 per well) or 6-well plates (~1 × 106 cells per well) for all
other assays.

4.2. Inhibition of Connexin Mediated Communication

For the purpose of this study, Gap27 (MW 1305) (Zealand Pharma, Glostrop, Denmark) was used
in aqueous solution at doses ranging from 1–100 µM for 15 min–48 h depending on experimental
requirements. The peptide and media were replaced at 8 h intervals.

4.3. Knockdown of Cx43 Expression by siRNA

SiRNA duplex sequences targeted to Cx43 (TriFECTa®RNAi Kit from Integrated DNA
Technologies (Tyne & Wear, UK)) along with a fluorescently-labelled scrambled transfection control
duplex: TYE 563™ was used to knockdown Cx43 expression. SiRNA transfection was carried out using
Lipofectamine 3000 transfection reagent (Invitrogen, Paisley, UK). Transfection reagents and siRNAs
were combined and incubated for 20 min at room temperature for complex formation. Cells were
transfected with a final concentration of 5 nM siRNA diluted in 1.5 mL of EPILIFE medium for primary
keratinocytes and serum free DMEM (SFM) for fibroblasts. Twenty hours post transfection scrape
wound assays were performed and cells subsequently harvested for endpoint analysis as described
below. Transfection efficiency of control SiRNA, determined by fluorescent microscopy analysis of the
scrambled SiRNA control was ~90% for all cell types.
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4.4. Hemichannel Functionality Assays

Hemichannel activity was assessed by ATP release assays with minor modifications to that
previously described [51]. Briefly, cells were seeded on 24-well plates and grown to ~80% confluency
overnight. Cells were then washed three times in SFM and incubated in SFM for 1 h prior to exposure
to Gap27 for 90 min. Following this, one half of the plate was challenged with Ca2+ and Mg2+ free PBS
in the presence or absence of Gap27 for 15 min. Supernatants were collected and microcentrifuged at
10,000 rpm for 5 min prior to addition of 25 µL of supernatant to a well of an opaque-walled Nunc
96 well plate containing 25 µL ATP assay mix diluted 1:10 with ATP dilution buffer (Sigma-Aldrich,
Gillingham, UK). ATP standards (25 µL) 0–10 nM diluted in SFM, and in PBS, were also added in
duplicate. Luminescence was measured in relative luminescence units (RLU) using the Fluostar
Optima plate reader (BMG Labtech, Aylesbury, UK). Experiments were performed in triplicate per
treatment group, and each experiment was carried out a minimum of three times (n = 3). Data is
represented as the fold change in ATP released between control and peptide treated wells.

4.5. Scrape Wound Assays and Time-Lapse Microscopic Analysis of Cell Migration

Cells were pre-exposed to peptide or SFM for 90 min, or were transfected with SiRNA targeting
Cx43 for 20 h, prior to introducing a scrape wound to confluent cell monolayers using a sterile 100 µL
pipette tip. Cell migration was monitored by taking triplicate images of wound area 0, 6, 12 and 24 h
post scraping on a CMEX-3200 camera [51]. The scrape wound area was measured at each time point
using Image J software. Values were normalised by comparing with the corresponding initial wound
size. For time-lapse microscopy analysis, images were recorded on a Zeiss Axiovert 100 microscope
(Cambridge, UK) linked up to a CCD camera (Nikon Eclipse TS10, Kingston Upon Thames, UK). Image
capture was controlled by AQMsoftware (Kinetic Imaging Ltd., Nottingham, UK). Images were captured
every 15 min for up to 48 h [52]. The movement of 18 individual cells for each set of JFF time-lapse
images in the presence or absence of 100 µM Gap27, were tracked using Image J software tracking plug-in.
The size of each image was 512× 512 pixels with a diameter of ~500 µm, therefore, at×100 magnification
each pixel represented approximately 1 µm. This value was used as the x/y calibration value with a
time interval value of 15 min. Cells were tracked by clicking on the leading edge of a cell on sequential
images representing every 15 min over the 48 h period. Six cells were randomly chosen from each of
(1) wound edge; (2) 0–50 µm from the wound edge and (3) 50–100 µm from the wound edge. The data
output produced by Image J software included the XY co-ordinates together with distance and velocity
values. The XY co-ordinates were plotted on a graph using Excel software, providing an individual track
for each cell, enabling visualisation of cell movement over 48 h.

4.6. RNA Extraction and Real Time PCR

The Bioline ISOLATE RNA Kit (Bioline, London, UK) was used according to manufacturer’s
instructions to extract RNA from cell monolayers (usually 2 wells for a 6 well plate). RNA concentrations
were determined using a Nanodrop ND-100 at 260/280 nm. cDNA was prepared from the RNA
samples using cDNA synthesis kit from Primerdesign and real-time PCR was performed using
Primerdesign Master Mix kit (Primer Design, Chandlers Ford, UK). Primers amplifying human
Cx43, human Ki67, human TGF-β1 and the house keeping gene GAPDH were purchased from IDT
(Tyne & Wear, UK) (Table S1). All reactions were performed in an ABI 7500 FA Real-Time PCR system
(Applied Biosystems, Warrington, UK). The mRNA expression level for each gene was determined
using the ∆Ct method and each sample was run in triplicate.

The CT value obtained for the target gene in all samples was first normalised with the CT value
obtained for the housekeeping gene. The resulting change in CT (∆Ct) calculated for test samples
was then normalised with the ∆Ct calculated for the control sample, giving a ∆∆Ct value. The gene
expression ratio was calculated using 2−∆∆Ct, providing a fold increase or decrease in gene expression
compared to the control sample. Gene fold changes ≥±2 were considered significant.
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4.7. Western Blot Analysis

Protein was harvested from cells in 100 µL lysis buffer (1% (v/v) SDS, 30 mM Na3VO4, 1 µM DTT,
protease inhibitor cocktail (Sigma-Aldrich) and phenylmethanosulfonylfluoride (PMSF)) prepared in
1xPBS as previously described [52].

Equivalent amounts of protein (30–80 µg) were mixed with 5 µL loading buffer (NuPAGE® LDS
Sample Buffer (4X)) and the volume adjusted to 20 µL with lysis buffer. Samples were mixed for
15 min at 20 rpm followed by brief centrifugation and separated by 4–12% sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE) (NuPAGE® Novex® Bis-Tris Mini Gels; Thermo
Fisher) followed by electrophoretic transfer to a nitrocellulose membrane using an I-Blot transfer
system (Invitrogen) following manufacturer’s instructions. Transfer efficiency was determined by
staining the blots with Ponceau S (0.1% (w/v) in 5% acetic acid) (Sigma-Aldrich) for 15 s, prior to rinsing
in distilled water and probing for relevant protein expression using appropriate primary antibodies as
previously described [52]. Membranes were probed with primary antibodies to detect Cx43 (Rivedal
polylclonal antibody 1:2000 dilution, kindly gifted by Edward Leithe [53]), GAPDH (mouse monoclonal
antibody, Santa Cruz (LOCATION) (1:5000 dilution)) and pSmad3 (rabbit polyclonal antibody Abcam
(Cambridge, UK) (1:2000 dilution)) expression as appropriate. Secondary antibodies were IRDye®

800CW goat anti-rabbit IgG or IRDye® 680CW goat anti-mouse IgG (Licor 1:15,000 dilution) as
appropriate. Blots were developed by exposing the image for a period of 15 s to 5 min according to the
intensity of the signal using an Odyssey FC Dual Mode Licor imaging system (LI-COR Biosceinces
UK Ltd, Lincoln, UK). Densitometric values were quantified using the Odyssey software. To enable
normalisation of the blots and comparison of the effect of different treatments on protein expression,
the intensity of the protein bands were compared to the house keeping protein.

4.8. Statistical Analysis

Experiments were performed in triplicate per setting and on three separate occasions with at least
2 different patient samples. Results were compiled in GraphPad Prism software (La Jolla, San Diego,
CA, USA) and all data is expressed as mean ± SEM unless otherwise stated. Statistical tests were
performed on the data using Student’s unpaired t-test or one-way ANOVA and Dunnett’s post-test as
appropriate, with statistical significance inferred at p < 0.05.

5. Conclusions

In conclusion, we provide an in-depth study on the comparative effects of Gap27 with a
Cx43-SiRNA knockdown approach to improve wound healing and identify significant differences in
the cell signalling pathways that are controlled by Cx43 in fibroblasts and keratinocytes. Further work
is now warranted to define the molecular pathways by which Cx43 exerts its effects in the skin which
will aide in identifying new therapeutic strategies and applications for specific types of wounds.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/2/604/s1.
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CMC connexin mediated communication
JFF human juvenile foreskin derived fibroblasts
HNDF human neonatal dermal fibroblasts
AF adult dermal derived fibroblasts
AK adult keratinocytes
SFM serum free media

References

1. Evans, W.H.; Martin, P.E. Gap junctions: Structure and function (Review). Mol. Membr. Biol. 2002, 19,
121–136. [CrossRef] [PubMed]

2. Evans, W.H.; Bultynck, G.; Leybaert, L. Manipulating connexin communication channels: Use of
peptidomimetics and the translational outputs. J. Mem. Biol. 2012, 245, 437–449. [CrossRef] [PubMed]

3. Evans, W.H.; Leybaert, L. Mimetic peptides as blockers of connexin channel-facilitated intercellular
communication. Cell. Commun. Adhes. 2007, 14, 265–273. [CrossRef] [PubMed]

4. Willebrords, J.; Maes, M.; Crespo Yanguas, S.; Vinken, M. Inhibitors of connexin and pannexin channels as
potential therapeutics. Pharmacol. Ther. 2017, 180, 144–160. [CrossRef] [PubMed]

5. Chaytor, A.T.; Evans, W.H.; Griffith, T.M. Peptides homologous to extracellular loop motifs of connexin 43
reversibly abolish rhythmic contractile activity in rabbit arteries. J. Physiol. 1997, 503 Pt 1, 99–110. [CrossRef]
[PubMed]

6. Chaytor, A.T.; Martin, P.E.; Evans, W.H.; Randall, M.D.; Griffith, T.M. The endothelial component of
cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication.
J. Physiol. 1999, 520, 539–550. [CrossRef] [PubMed]

7. Dora, K.A.; Martin, P.E.; Chaytor, A.T.; Evans, W.H.; Garland, C.J.; Griffith, T.M. Role of heterocellular Gap
junctional communication in endothelium-dependent smooth muscle hyperpolarization: inhibition by a
connexin-mimetic peptide. Biochem. Biophys. Res. Commun. 1999, 254, 27–31. [CrossRef] [PubMed]

8. Hutcheson, I.R.; Chaytor, A.T.; Evans, W.H.; Griffith, T.M. Nitric oxide-independent relaxations to
acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions
and phospholipase A2. Circ. Res. 1999, 84, 53–63. [CrossRef] [PubMed]

9. Griffith, T.M.; Chaytor, A.T.; Edwards, D.H. The obligatory link: Role of gap junctional communication in
endothelium-dependent smooth muscle hyperpolarization. Pharmacol. Res. 2004, 49, 551–564. [CrossRef]
[PubMed]

10. Straub, A.C.; Zeigler, A.C.; Isakson, B.E. The myoendothelial junction: connections that deliver the message.
Physiology 2014, 29, 242–249. [CrossRef] [PubMed]

11. Verma, V.; Hallett, M.B.; Leybaert, L.; Martin, P.E.; Evans, W.H. Perturbing plasma membrane hemichannels
attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins. Eur. J. Cell. Biol. 2009, 88,
79–90. [CrossRef] [PubMed]

12. Boitano, S.; Evans, W.H. Connexin mimetic peptides reversibly inhibit Ca2+ signaling through gap junctions
in airway cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L623–L630. [CrossRef] [PubMed]

13. Yoon, J.J.; Nicholson, L.F.; Feng, S.X.; Vis, J.C.; Green, C.R. A novel method of organotypic brain slice culture
using connexin-specific antisense oligodeoxynucleotides to improve neuronal survival. Brain Res. 2010, 1353,
194–203. [CrossRef] [PubMed]

14. Oviedo-Orta, E.; Errington, R.J.; Evans, W.H. Gap junction intercellular communication during lymphocyte
transendothelial migration. Cell. Biol. Int. 2002, 26, 253–263. [CrossRef] [PubMed]

15. Oviedo-Orta, E.; Evans, W.H. Gap junctions and connexins: potential contributors to the immunological
synapse. J. Leukoc. Biol. 2002, 72, 636–642. [PubMed]

16. Kameritsch, P.; Pogoda, K.; Pohl, U. Channel-independent influence of connexin 43 on cell migration.
BBA-Bioenergetics 2012, 1818, 1993–2001. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/09687680210139839
http://www.ncbi.nlm.nih.gov/pubmed/12126230
http://dx.doi.org/10.1007/s00232-012-9488-5
http://www.ncbi.nlm.nih.gov/pubmed/22886208
http://dx.doi.org/10.1080/15419060801891034
http://www.ncbi.nlm.nih.gov/pubmed/18392994
http://dx.doi.org/10.1016/j.pharmthera.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28720428
http://dx.doi.org/10.1111/j.1469-7793.1997.099bi.x
http://www.ncbi.nlm.nih.gov/pubmed/9288678
http://dx.doi.org/10.1111/j.1469-7793.1999.00539.x
http://www.ncbi.nlm.nih.gov/pubmed/10523421
http://dx.doi.org/10.1006/bbrc.1998.9877
http://www.ncbi.nlm.nih.gov/pubmed/9920727
http://dx.doi.org/10.1161/01.RES.84.1.53
http://www.ncbi.nlm.nih.gov/pubmed/9915774
http://dx.doi.org/10.1016/j.phrs.2003.11.014
http://www.ncbi.nlm.nih.gov/pubmed/15026033
http://dx.doi.org/10.1152/physiol.00042.2013
http://www.ncbi.nlm.nih.gov/pubmed/24985328
http://dx.doi.org/10.1016/j.ejcb.2008.08.005
http://www.ncbi.nlm.nih.gov/pubmed/18951659
http://dx.doi.org/10.1152/ajplung.2000.279.4.L623
http://www.ncbi.nlm.nih.gov/pubmed/11000121
http://dx.doi.org/10.1016/j.brainres.2010.07.005
http://www.ncbi.nlm.nih.gov/pubmed/20624376
http://dx.doi.org/10.1006/cbir.2001.0840
http://www.ncbi.nlm.nih.gov/pubmed/11991653
http://www.ncbi.nlm.nih.gov/pubmed/12377931
http://dx.doi.org/10.1016/j.bbamem.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22155212


Int. J. Mol. Sci. 2018, 19, 604 14 of 16

17. Brandner, J.M.; Houdek, P.; Husing, B.; Kaiser, C.; Moll, I. Connexins 26, 30, and 43: Differences among
spontaneous, chronic, and accelerated human wound healing. J. Investig. Dermatol. 2004, 122, 1310–1320.
[CrossRef] [PubMed]

18. Becker, D.L.; Thrasivoulou, C.; Phillips, A.R. Connexins in wound healing; perspectives in diabetic patients.
BBA-Bioenergetics 2012, 1818, 2068–2075. [CrossRef] [PubMed]

19. Kretz, M.; Euwens, C.; Hombach, S.; Eckardt, D.; Teubner, B.; Traub, O.; Willecke, K.; Ott, T. Altered connexin
expression and wound healing in the epidermis of connexin-deficient mice. J. Cell. Sci. 2003, 116 Pt 16,
3443–3452. [CrossRef] [PubMed]

20. Mori, R.; Power, K.T.; Wang, C.M.; Martin, P.; Becker, D.L. Acute downregulation of connexin43 at wound
sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast
migration. J. Cell. Sci. 2006, 119 Pt 24, 5193–5203. [CrossRef] [PubMed]

21. Mendoza-Naranjo, A.; Cormie, P.; Serrano, A.E.; Hu, R.; O′Neill, S.; Wang, C.M.; Thrasivoulou, C.;
Power, K.T.; White, A.; Serena, T.; et al. Targeting Cx43 and N-cadherin, which are abnormally upregulated in
venous leg ulcers, influences migration, adhesion and activation of Rho GTPases. PLoS ONE 2012, 7, e37374.
[CrossRef] [PubMed]

22. Pollok, S.; Pfeiffer, A.C.; Lobmann, R.; Wright, C.S.; Moll, I.; Martin, P.E.; Brandner, J.M. Connexin 43 mimetic
peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and
non-diabetic cells. J. Cell. Mol. Med. 2011, 15, 861–873. [CrossRef] [PubMed]

23. Wright, C.S.; Pollok, S.; Flint, D.J.; Brandner, J.M.; Martin, P.E. The connexin mimetic peptide Gap27
increases human dermal fibroblast migration in hyperglycemic and hyperinsulinemic conditions in vitro.
J. Cell. Physiol. 2012, 227, 77–87. [CrossRef] [PubMed]

24. Wright, C.S.; van Steensel, M.A.; Hodgins, M.B.; Martin, P.E. Connexin mimetic peptides improve cell
migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen. 2009,
17, 240–249. [CrossRef] [PubMed]

25. Ghatnekar, G.S.; Grek, C.L.; Armstrong, D.G.; Desai, S.C.; Gourdie, R.G. The effect of a connexin43-based
Peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial. J. Investig. Dermatol.
2015, 135, 289–298. [CrossRef] [PubMed]

26. Qiu, C.; Coutinho, P.; Frank, S.; Franke, S.; Law, L.Y.; Martin, P.; Green, C.R.; Becker, D.L. Targeting connexin43
expression accelerates the rate of wound repair. Curr. Biol. 2003, 13, 1697–1703. [CrossRef] [PubMed]

27. Lorraine, C. The role of connexins in skin wound healing events. Ph.D. Thesis, Glasgow Caledonian
University, Glasgow, UK, available through British Library Electronic Theses Online System. 2015.

28. Wright, J.A.; Richards, T.; Becker, D.L. Connexins and diabetes. Cardiol. Res. Pract. 2012, 2012, 496904.
[CrossRef] [PubMed]

29. Tarzemany, R.; Jiang, G.; Larjava, H.; Hakkinen, L. Expression and function of connexin 43 in human gingival
wound healing and fibroblasts. PLoS ONE 2015, 10, e0115524. [CrossRef] [PubMed]

30. Riding, A.; Pullar, C.E. ATP Release and P2 Y Receptor Signaling are Essential for Keratinocyte Galvanotaxis.
J. Cell. Physiol. 2016, 231, 181–191. [CrossRef] [PubMed]

31. Grupcheva, C.N.; Laux, W.T.; Rupenthal, I.D.; McGhee, J.; McGhee, C.N.; Green, C.R. Improved corneal
wound healing through modulation of gap junction communication using connexin43-specific antisense
oligodeoxynucleotides. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1130–1138. [CrossRef] [PubMed]

32. Ormonde, S.; Chou, C.Y.; Goold, L.; Petsoglou, C.; Al-Taie, R.; Sherwin, T.; McGhee, C.N.; Green, C.R.
Regulation of connexin43 gap junction protein triggers vascular recovery and healing in human ocular
persistent epithelial defect wounds. J. Memb. Biol. 2012, 245, 381–388. [CrossRef] [PubMed]

33. Ghatnekar, G.S.; O′Quinn, M.P.; Jourdan, L.J.; Gurjarpadhye, A.A.; Draughn, R.L.; Gourdie, R.G. Connexin43
carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin
wounding. Regen. Med. 2009, 4, 205–223. [CrossRef] [PubMed]

34. Moore, K.; Bryant, Z.J.; Ghatnekar, G.; Singh, U.P.; Gourdie, R.G.; Potts, J.D. A synthetic connexin 43 mimetic
peptide augments corneal wound healing. Exp. Eye Res. 2013, 115, 178–188. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.0022-202X.2004.22529.x
http://www.ncbi.nlm.nih.gov/pubmed/15140236
http://dx.doi.org/10.1016/j.bbamem.2011.11.017
http://www.ncbi.nlm.nih.gov/pubmed/22155211
http://dx.doi.org/10.1242/jcs.00638
http://www.ncbi.nlm.nih.gov/pubmed/12840073
http://dx.doi.org/10.1242/jcs.03320
http://www.ncbi.nlm.nih.gov/pubmed/17158921
http://dx.doi.org/10.1371/journal.pone.0037374
http://www.ncbi.nlm.nih.gov/pubmed/22615994
http://dx.doi.org/10.1111/j.1582-4934.2010.01057.x
http://www.ncbi.nlm.nih.gov/pubmed/20345849
http://dx.doi.org/10.1002/jcp.22705
http://www.ncbi.nlm.nih.gov/pubmed/21984074
http://dx.doi.org/10.1111/j.1524-475X.2009.00471.x
http://www.ncbi.nlm.nih.gov/pubmed/19320893
http://dx.doi.org/10.1038/jid.2014.318
http://www.ncbi.nlm.nih.gov/pubmed/25072595
http://dx.doi.org/10.1016/j.cub.2003.09.007
http://www.ncbi.nlm.nih.gov/pubmed/14521835
http://dx.doi.org/10.1155/2012/496904
http://www.ncbi.nlm.nih.gov/pubmed/22536530
http://dx.doi.org/10.1371/journal.pone.0115524
http://www.ncbi.nlm.nih.gov/pubmed/25584940
http://dx.doi.org/10.1002/jcp.25070
http://www.ncbi.nlm.nih.gov/pubmed/26058714
http://dx.doi.org/10.1167/iovs.11-8711
http://www.ncbi.nlm.nih.gov/pubmed/22247467
http://dx.doi.org/10.1007/s00232-012-9460-4
http://www.ncbi.nlm.nih.gov/pubmed/22797940
http://dx.doi.org/10.2217/17460751.4.2.205
http://www.ncbi.nlm.nih.gov/pubmed/19317641
http://dx.doi.org/10.1016/j.exer.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23876491


Int. J. Mol. Sci. 2018, 19, 604 15 of 16

35. Soder, B.L.; Propst, J.T.; Brooks, T.M.; Goodwin, R.L.; Friedman, H.I.; Yost, M.J.; Gourdie, R.G. The connexin43
carboxyl-terminal peptide ACT1 modulates the biological response to silicone implants. Plast. Reconstr. Surg.
2009, 123, 1440–1451. [CrossRef] [PubMed]

36. Danesh-Meyer, H.V.; Kerr, N.M.; Zhang, J.; Eady, E.K.; O′Carroll, S.J.; Nicholson, L.F.; Johnson, C.S.;
Green, C.R. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following
retinal ischaemia. Brain 2012, 135 Pt 2, 506–520. [CrossRef] [PubMed]

37. Guo, C.X.; Mat Nor, M.N.; Danesh-Meyer, H.V.; Vessey, K.A.; Fletcher, E.L.; O′Carroll, S.J.; Acosta, M.L.;
Green, C.R. Connexin43 Mimetic Peptide Improves Retinal Function and Reduces Inflammation in a
Light-Damaged Albino Rat Model. Investig. Ophthalmol. Vis.Sci. 2016, 57, 3961–3973. [CrossRef] [PubMed]

38. Mao, Y.; Nguyen, T.; Tonkin, R.S.; Lees, J.G.; Warren, C.; O′Carroll, S.J.; Nicholson, L.F.B.; Green, C.R.;
Moalem-Taylor, G.; Gorrie, C.A. Characterisation of Peptide5 systemic administration for treating traumatic
spinal cord injured rats. Exp. Brain Res. 2017, 235, 3033–3048. [CrossRef] [PubMed]

39. Elbadawy, H.M.; Mirabelli, P.; Xeroudaki, M.; Parekh, M.; Bertolin, M.; Breda, C.; Cagini, C.; Ponzin, D.;
Lagali, N.; Ferrari, S. Effect of connexin43 inhibition by the mimetic peptide Gap27 on corneal wound
healing, inflammation and neovascularization. Br. J. Pharmacol. 2016, 173, 2880–2893. [CrossRef] [PubMed]

40. Tarzemany, R.; Jiang, G.; Jiang, J.X.; Larjava, H.; Hakkinen, L. Connexin43 Hemichannels Regulate the
Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci. Rep. 2017, 7, 14157.
[CrossRef] [PubMed]

41. Abudara, V.; Bechberger, J.; Freitas-Andrade, M.; De Bock, M.; Wang, N.; Bultynck, G.; Naus, C.C.;
Leybaert, L.; Giaume, C. The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap
junctional communication in astrocytes. Front. Cell. Neurosci. 2014, 8, 306. [CrossRef] [PubMed]

42. Iyyathurai, J.; Wang, N.; D′Hondt, C.; Jiang, J.X.; Leybaert, L.; Bultynck, G. The SH3—Binding domain of
Cx43 participates in loop/tail interactions critical for Cx43—hemichannel activity. CMLS 2017. [CrossRef]
[PubMed]

43. Glass, B.J.; Hu, R.G.; Phillips, A.R.; Becker, D.L. The action of mimetic peptides on connexins protects
fibroblasts from the negative effects of ischemia reperfusion. Biol. Open 2015, 4, 1473–1480. [CrossRef]
[PubMed]

44. Kandyba, E.E.; Hodgins, M.B.; Martin, P.E. A murine living skin equivalent amenable to live-cell imaging:
Analysis of the roles of connexins in the epidermis. J. Investig. Dermatol. 2008, 128, 1039–1049. [CrossRef]
[PubMed]

45. Kelly, J.J.; Esseltine, J.L.; Shao, Q.; Jabs, E.W.; Sampson, J.; Auranen, M.; Bai, D.; Laird, D.W. Specific
functional pathologies of Cx43 mutations associated with oculodentodigital dysplasia. Mol. Biol. Cell. 2016,
27, 2172–2185. [CrossRef] [PubMed]

46. Hills, C.E.; Siamantouras, E.; Smith, S.W.; Cockwell, P.; Liu, K.K.; Squires, P.E. TGFbeta modulates cell-to-cell
communication in early epithelial-to-mesenchymal transition. Diabetologia 2012, 55, 812–824. [CrossRef]
[PubMed]

47. Postlethwaite, A.E.; Keski-Oja, J.; Moses, H.L.; Kang, A.H. Stimulation of the chemotactic migration of
human fibroblasts by transforming growth factor beta. J. Exp. Med. 1987, 165, 251–256. [CrossRef] [PubMed]

48. Dai, P.; Nakagami, T.; Tanaka, H.; Hitomi, T.; Takamatsu, T. Cx43 mediates TGF-beta signaling through
competitive Smads binding to microtubules. Mol. Biol. Cell. 2007, 18, 2264–2273. [CrossRef] [PubMed]

49. Leivonen, S.K.; Lazaridis, K.; Decock, J.; Chantry, A.; Edwards, D.R.; Kahari, V.M. TGF-β-elicited induction of
tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between
Smad3, p38α, and ERK1/2. PLoS ONE 2013, 8, e57474. [CrossRef] [PubMed]

50. Huang, P.; Bi, J.; Owen, G.R.; Chen, W.; Rokka, A.; Koivisto, L.; Heino, J.; Hakkinen, L.;
Larjava, H. Keratinocyte Microvesicles Regulate the Expression of Multiple Genes in Dermal Fibroblasts.
J. Investig. Dermatol. 2015, 135, 3051–3059. [CrossRef] [PubMed]

51. Wright, C.S.; Berends, R.F.; Flint, D.J.; Martin, P.E. Cell motility in models of wounded human skin is
improved by Gap27 despite raised glucose, insulin and IGFBP-5. Exp. Cell. Res. 2013, 319, 390–401.
[CrossRef] [PubMed]

http://dx.doi.org/10.1097/PRS.0b013e3181a0741d
http://www.ncbi.nlm.nih.gov/pubmed/19407614
http://dx.doi.org/10.1093/brain/awr338
http://www.ncbi.nlm.nih.gov/pubmed/22345088
http://dx.doi.org/10.1167/iovs.15-16643
http://www.ncbi.nlm.nih.gov/pubmed/27490318
http://dx.doi.org/10.1007/s00221-017-5023-3
http://www.ncbi.nlm.nih.gov/pubmed/28725925
http://dx.doi.org/10.1111/bph.13568
http://www.ncbi.nlm.nih.gov/pubmed/27472295
http://dx.doi.org/10.1038/s41598-017-12672-1
http://www.ncbi.nlm.nih.gov/pubmed/29074845
http://dx.doi.org/10.3389/fncel.2014.00306
http://www.ncbi.nlm.nih.gov/pubmed/25374505
http://dx.doi.org/10.1007/s00018-017-2722-7
http://www.ncbi.nlm.nih.gov/pubmed/29218600
http://dx.doi.org/10.1242/bio.013573
http://www.ncbi.nlm.nih.gov/pubmed/26471768
http://dx.doi.org/10.1038/sj.jid.5701125
http://www.ncbi.nlm.nih.gov/pubmed/17960178
http://dx.doi.org/10.1091/mbc.E16-01-0062
http://www.ncbi.nlm.nih.gov/pubmed/27226478
http://dx.doi.org/10.1007/s00125-011-2409-9
http://www.ncbi.nlm.nih.gov/pubmed/22215279
http://dx.doi.org/10.1084/jem.165.1.251
http://www.ncbi.nlm.nih.gov/pubmed/3491869
http://dx.doi.org/10.1091/mbc.E06-12-1064
http://www.ncbi.nlm.nih.gov/pubmed/17429065
http://dx.doi.org/10.1371/journal.pone.0057474
http://www.ncbi.nlm.nih.gov/pubmed/23468994
http://dx.doi.org/10.1038/jid.2015.320
http://www.ncbi.nlm.nih.gov/pubmed/26288358
http://dx.doi.org/10.1016/j.yexcr.2012.12.013
http://www.ncbi.nlm.nih.gov/pubmed/23262023


Int. J. Mol. Sci. 2018, 19, 604 16 of 16

52. Johnstone, S.R.; Best, A.K.; Wright, C.S.; Isakson, B.E.; Errington, R.J.; Martin, P.E. Enhanced connexin 43
expression delays intra-mitotic duration and cell cycle traverse independently of gap junction channel
function. J. Cell. Biochem. 2010, 110, 772–782. [CrossRef] [PubMed]

53. Leithe, E.; Rivedal, E. Ubiquitination and down-regulation of gap junction protein connexin-43 in response to
12-O-tetradecanoylphorbol 13-acetate treatment. J. Biol. Chem. 2004, 279, 50089–50096. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/jcb.22590
http://www.ncbi.nlm.nih.gov/pubmed/20512937
http://dx.doi.org/10.1074/jbc.M402006200
http://www.ncbi.nlm.nih.gov/pubmed/15371442
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	The Impact of Gap27 on Cell Migration Rates in Juvenile Foreskin Fibroblasts 
	Impact of Gap27 and SiRNA Targeted to Cx43 on Cell Migration in Skin Model Systems 
	Gap27 Attenuates Hemichannel Signalling at Lower Doses than Gap Junction Coupling 
	The Impact of Gap27 and SiRNA Targeted to Cx43 on Gene and Protein Expression Profiles in Skin Model Systems 
	The Impact of Gap27 and SiRNA Targeted to Cx43 on Cell Proliferation, TGF-1 and SMAD3 Signalling Pathways 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Inhibition of Connexin Mediated Communication 
	Knockdown of Cx43 Expression by siRNA 
	Hemichannel Functionality Assays 
	Scrape Wound Assays and Time-Lapse Microscopic Analysis of Cell Migration 
	RNA Extraction and Real Time PCR 
	Western Blot Analysis 
	Statistical Analysis 

	Conclusions 
	References

