6 research outputs found

    Initial arch wires used in orthodontic treatment with fixed appliances

    Get PDF
    Background: Initial arch wires are the first arch wires to be inserted into the fixed appliance at the beginning of orthodontic treatment and are used mainly for the alignment of teeth by correcting crowding and rotations. With a number of different types of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause least amount of root resorption and pain during the initial aligning stage of treatment. This is an update of the review entitledInitial arch wires for alignment of crooked teeth with fixed orthodontic braces, which was first published in 2010. Objectives: To assess the effects of initial arch wires for the alignment of teeth with fixed orthodontic braces, in terms of the rate of tooth alignment, amount of root resorption accompanying tooth movement, and intensity of pain experienced by patients during the initial alignment stage of treatment. Search methods: Cochrane Oral Health\u27s Information Specialist searched the following databases: Cochrane Oral Health\u27s Trials Register (to 5 October 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 9), MEDLINE Ovid (1946 to 5 October 2017), and Embase Ovid (1980 to 5 October 2017. The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Selection criteria: We included randomised controlled trials (RCTs) of initial arch wires to align teeth with fixed orthodontic braces. We included only studies involving participants with upper or lower, or both, full arch fixed orthodontic appliances. Data collection and analysis: Two review authors were responsible for study selection, \u27Risk of bias\u27 assessment and data extraction. We resolved disagreements by discussion between the review authors. We contacted corresponding authors of included studies to obtain missing information. We assessed the quality of the evidence for each comparison and outcome as high, moderate, low or very low, according to GRADE criteria. Main results: For this update, we found three new RCTs (228 participants), bringing the total to 12 RCTs with 799 participants. We judged three studies to be at high risk of bias, and three to be at low risk of bias; six were unclear. None of the studies reported the adverse outcome of root resorption. The review assessed six comparisons. 1. Multistrand stainless steel versus superelastic nickel-titanium (NiTi) arch wires. There were five studies in this group and it was appropriate to undertake a meta-analysis of two of them. There is insufficient evidence from these studies to determine whether there is a difference in rate of alignment between multistrand stainless steel and superelastic NiTi arch wires (mean difference (MD) -7.5 mm per month, 95% confidence interval (CI) -26.27 to 11.27; 1 study, 48 participants; low-quality evidence). The findings for pain at day 1 as measured on a 100 mm visual analogue scale suggested that there was no meaningful difference between the interventions (MD -2.68 mm, 95% CI -6.75 to 1.38; 2 studies, 127 participants; moderate-quality evidence). 2. Multistrand stainless steel versus thermoelastic NiTi arch wires. There were two studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from the studies to determine whether there is a difference in rate of alignment between multistrand stainless steel and thermoelastic NiTi arch wires (low-quality evidence). Pain was not measured. 3. Conventional NiTi versus superelastic NiTi arch wires. There were three studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from these studies to determine whether there is any difference between conventional and superelastic NiTi arch wires with regard to either alignment or pain (low- to very low-quality evidence). 4. Conventional NiTi versus thermoelastic NiTi arch wires. There were two studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from these studies to determine whether there is a difference in alignment between conventional and thermoelastic NiTi arch wires (low-quality evidence). Pain was not measured. 5. Single-strand superelastic NiTi versus coaxial superelastic NiTi arch wires. There was only one study (24 participants) in this group. There is moderate-quality evidence that coaxial superelastic NiTi can produce greater tooth movement over 12 weeks (MD -6.76 mm, 95% CI -7.98 to -5.55). Pain was not measured. 6. Superelastic NiTi versus thermoelastic NiTi arch wires. There were three studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from these studies to determine whether there is a difference in alignment or pain between superelastic and thermoelastic NiTi arch wires (low-quality evidence). Authors\u27 conclusions: Moderate-quality evidence shows that arch wires of coaxial superelastic nickel-titanium (NiTi) can produce greater tooth movement over 12 weeks than arch wires made of single-strand superelastic NiTi. Moderate-quality evidence also suggests there may be no difference in pain at day 1 between multistrand stainless steel arch wires and superelastic NiTi arch wires. Other than these findings, there is insufficient evidence to determine whether any particular arch wire material is superior to any other in terms of alignment rate, time to alignment, pain and root resorption

    Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces

    No full text
    Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications
    corecore