167 research outputs found

    Stochastic determination of matrix determinants

    Full text link
    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations - matrices - acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.Comment: 8 pages, 5 figure

    Bayesian inference of early-universe signals

    Get PDF
    This thesis focuses on the development and application of Bayesian inference techniques for early-Universe signals and on the advancement of mathematical tools for information retrieval. A crucial quantity required to gain information from the early Universe is the primordial scalar potential and its statistics. We reconstruct this scalar potential from cosmic microwave background data. Technically, the inference is done by splitting the large inverse problem of such a reconstruction into many, each of them solved by an optimal linear filter. Once the primordial scalar potential and its correlation structure have been obtained the underlying physics can be directly inferred from it. Small deviations of the scalar potential from Gaussianity, for instance, can be used to study parameters of inflationary models. A method to infer such parameters from non-Gaussianity is presented. To avoid expensive numerical techniques the method is kept analytical as far as possible. This is achieved by introducing an approximation of the desired posterior probability including a Taylor expansion of a matrix determinant. The calculation of a determinant is also essential in many other Bayesian approaches, both apart from and within cosmology. In cases where a Taylor approximation fails, its evaluation is usually challenging. The evaluation is in particular difficult, when dealing with big data, where matrices are to huge to be accessible directly, but need to be represented indirectly by a computer routine implementing the action of the matrix. To solve this problem, we develop a method to calculate the determinant of a matrix by using well-known sampling techniques and an integral representation of the log-determinant. The prerequisite for the presented methods as well as for every data analysis of scientific experiments is a proper calibration of the measurement device. Therefore we advance the theory of self-calibration at the beginning of the thesis to infer signal and calibration simultaneously from data. This is achieved by successively absorbing more and more portions of calibration uncertainty into the signal inference equations. The result, the Calibration-Uncertainty Renormalized Estimator, follows from the solution of a coupled differential equation

    Diagnostics for insufficiencies of posterior calculations in Bayesian signal inference

    Full text link
    We present an error-diagnostic validation method for posterior distributions in Bayesian signal inference, an advancement of a previous work. It transfers deviations from the correct posterior into characteristic deviations from a uniform distribution of a quantity constructed for this purpose. We show that this method is able to reveal and discriminate several kinds of numerical and approximation errors, as well as their impact on the posterior distribution. For this we present four typical analytical examples of posteriors with incorrect variance, skewness, position of the maximum, or normalization. We show further how this test can be applied to multidimensional signals

    Fast and precise way to calculate the posterior for the local non-Gaussianity parameter fnlf_\text{nl} from cosmic microwave background observations

    Full text link
    We present an approximate calculation of the full Bayesian posterior probability distribution for the local non-Gaussianity parameter fnlf_{\text{nl}} from observations of cosmic microwave background anisotropies within the framework of information field theory. The approximation that we introduce allows us to dispense with numerically expensive sampling techniques. We use a novel posterior validation method (DIP test) in cosmology to test the precision of our method. It transfers inaccuracies of the calculated posterior into deviations from a uniform distribution for a specially constructed test quantity. For this procedure we study toy cases that use one- and two-dimensional flat skies, as well as the full spherical sky. We find that we are able to calculate the posterior precisely under a flat-sky approximation, albeit not in the spherical case. We argue that this is most likely due to an insufficient precision of the used numerical implementation of the spherical harmonic transform, which might affect other non-Gaussianity estimators as well. Furthermore, we present how a nonlinear reconstruction of the primordial gravitational potential on the full spherical sky can be obtained in principle. Using the flat-sky approximation, we find deviations for the posterior of fnlf_{\text{nl}} from a Gaussian shape that become more significant for larger values of the underlying true fnlf_{\text{nl}}. We also perform a comparison to the well-known estimator of Komatsu et al. [Astrophys. J. 634, 14 (2005)] and finally derive the posterior for the local non-Gaussianity parameter gnlg_{\text{nl}} as an example of how to extend the introduced formalism to higher orders of non-Gaussianity

    Signal inference with unknown response: Calibration-uncertainty renormalized estimator

    Full text link
    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of CURE, developed in the framework of information field theory, is starting with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify CURE by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov Chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a non-iterative alternative to it

    Quantitative wave function analysis for excited states of transition metal complexes

    Get PDF
    The character of an electronically excited state is one of the most important descriptors employed to discuss the photophysics and photochemistry of transition metal complexes. In transition metal complexes, the interaction between the metal and the different ligands gives rise to a rich variety of excited states, including metal-centered, intra-ligand, metal-to-ligand charge transfer, ligand-to-metal charge transfer, and ligand-to-ligand charge transfer states. Most often, these excited states are identified by considering the most important wave function excitation coefficients and inspecting visually the involved orbitals. This procedure is tedious, subjective, and imprecise. Instead, automatic and quantitative techniques for excited-state characterization are desirable. In this contribution we review the concept of charge transfer numbers---as implemented in the TheoDORE package---and show its wide applicability to characterize the excited states of transition metal complexes. Charge transfer numbers are a formal way to analyze an excited state in terms of electron transitions between groups of atoms based only on the well-defined transition density matrix. Its advantages are many: it can be fully automatized for many excited states, is objective and reproducible, and provides quantitative data useful for the discussion of trends or patterns. We also introduce a formalism for spin-orbit-mixed states and a method for statistical analysis of charge transfer numbers. The potential of this technique is demonstrated for a number of prototypical transition metal complexes containing Ir, Ru, and Re. Topics discussed include orbital delocalization between metal and carbonyl ligands, nonradiative decay through metal-centered states, effect of spin-orbit couplings on state character, and comparison among results obtained from different electronic structure methods.Comment: 47 pages, 19 figures, including supporting information (7 pages, 1 figure
    corecore