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a

Begriff ist Summe, Idee Resultat der Erfahrung; jene zu ziehen, wird Verstand, dieses zu
erfassen, Vernunft erfordert.

Johann Wolfgang von Goethe
Einzelheiten, Maximen und Reflexionen (1833) [1]





Abstract (GER). Das Kerngebiet dieser Dissertation bildet die Entwicklung
und Anwendung von Bayesschen Techniken zur Deduktion von Signalen im
frühen Universum sowie die Entwicklung von mathematischen Werkzeugen zur
Informationsgewinnung.
Eine wichtige Informationsquelle für das frühe Universum ist das ur-

sprüngliche Skalarpotential sowie seine Statistik. Deren Rekonstruktion aus
Messungen der kosmischen Hintergrundstrahlung wird hier präsentiert. Dabei
wird das außergewöhnlich große, inverse Problem in eine Vielzahl von Unter-
problemen aufgeteilt, von denen jedes durch einen optimalen linearen Filter
gelöst wird.
Einmal in Besitz einer Rekonstruktion des ursprünglichen Skalarpotentials

und seiner zugehörigen Korrelationsstruktur, ermöglichen diese sodann einen
direkten Rückschluss auf die zugrundeliegende Physik des frühen Univer-
sums. Zum Beispiel können kleinste Abweichungen des Skalarpotentials von
Gauß’scher Statistik benutzt werden, um Parameter von Inflationsmodellen zu
deduzieren. Hierzu wird eine Methode entwickelt und verifiziert, die simultan
eine Rekonstruktion der spektralen Leistungsdichte liefert. Um die Methode so
analytisch wie möglich zu halten und dadurch ressourcenschonend zu gestal-
ten, wird eine Näherung der a posteriori Wahrscheinlichkeit einschließlich der
Taylorentwicklung einer Determinante eingeführt.
Die Berechnung einer Matrix-Determinante ist ebenfalls in vielen anderen

Bayesschen Methoden, innerhalb und auch außerhalb der Kosmologie, es-
sentiell. Dies kann sehr anspruchsvoll sein, wenn eine Taylorentwicklung
fehlschlägt. Insbesondere wenn man mit sehr großen Datenmengen konfrontiert
ist, ist das problematisch, weil in diesem Fall Matrizen aufgrund ihrer Größe oft
nur indirekt durch Computerroutinen repräsentiert werden. Diese Computer-
routinen stellen die Wirkung der Matrizen dar. Um das Determinantenproblem
zu lösen wird der Logarithmus der Determinante als Integral reformuliert und
durch bekannte Stichprobenziehungstechniken bestimmt.
Für jede hier präsentierte Methode sowie für jede Datenanalyse von wis-

senschaftlichen Experimenten ist eine korrekte Kalibration des Messinstru-
ments unabdingbare Voraussetzung. Aus diesem Grund steht eine Weiter-
entwicklung der Theorie der Selbst-Kalibrierung — die Deduktion von Sig-
nal und Kalibration aus demselben Datensatz — den anderen Kapiteln vo-
ran. Die Weiterentwicklung basiert darauf, sukzessive mehr und mehr Anteile
der Kalibrationsunsicherheit in die Gleichungen für die Signalrekonstruktion
zu absorbieren. Resultierend daraus erhält man den ‘Calibration-Uncertainty
Renormalized Estimator’ als Lösung einer gekoppelten Differentialgleichung.
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Abstract (EN). This thesis focuses on the development and application of
Bayesian inference techniques for early-Universe signals and on the advance-
ment of mathematical tools for information retrieval.
A crucial quantity required to gain information from the early Universe is

the primordial scalar potential and its statistics. We reconstruct this scalar
potential from cosmic microwave background data. Technically, the inference
is done by splitting the large inverse problem of such a reconstruction into
many, each of them solved by an optimal linear filter.
Once the primordial scalar potential and its correlation structure have been

obtained the underlying physics can be directly inferred from it. Small devi-
ations of the scalar potential from Gaussianity, for instance, can be used to
study parameters of inflationary models. A method to infer such parameters
from non-Gaussianity is presented. To avoid expensive numerical techniques
the method is kept analytical as far as possible. This is achieved by introduc-
ing an approximation of the desired posterior probability including a Taylor
expansion of a matrix determinant.
The calculation of a determinant is also essential in many other Bayesian

approaches, both apart from and within cosmology. In cases where a Taylor
approximation fails, its evaluation is usually challenging. The evaluation is in
particular difficult, when dealing with big data, where matrices are to huge
to be accessible directly, but need to be represented indirectly by a computer
routine implementing the action of the matrix. To solve this problem, we
develop a method to calculate the determinant of a matrix by using well-known
sampling techniques and an integral representation of the log-determinant.
The prerequisite for the presented methods as well as for every data analysis

of scientific experiments is a proper calibration of the measurement device.
Therefore we advance the theory of self-calibration at the beginning of the
thesis to infer signal and calibration simultaneously from data. This is achieved
by successively absorbing more and more portions of calibration uncertainty
into the signal inference equations. The result, the Calibration-Uncertainty
Renormalized Estimator, follows from the solution of a coupled differential
equation.
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1. Introduction

1.1. The early Universe

This introductory section sketches some milestones of the history of the early1 and late
Universe, which are described in great detail in many of the standard textbooks on cosmol-
ogy. The argumentation and notation mainly follow references [2–4] as well as references
[5–7]. Natural units are used throughout this section, i.e., c = ~ = 1. It is assumed that
the reader is familiar with the foundations of particle physics and of the standard model
of cosmology, namely the Lambda Cold Dark Matter model (ΛCDM).

1.1.1. Chronology of the Universe in a nutshell: the cosmic standard model

The cosmic standard model describes the evolution of the expanding Universe in the frame-
work of quantum field theory and general relativity. The known cosmic history can be bro-
ken into three reliably known epochs and the still controversial inflationary period. Each
of those was mainly governed by a different form of energy, namely the inflaton field, ra-
diation, matter, and dark energy, see Fig. 1.1. Henceforth some key-events of the thermal
evolution of the Universe are recalled.
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Figure 1.1.: Evolution dependent distribution of the forms of energy in the Universe. After the
components – radiation r, matter m, and dark energy Λ – have decoupled they scale differently
with time. This can be seen by Eq. (1.17), recalling that ρr ∝ a−4, ρm ∝ a−3, and ρΛ ∝ const.
Figure adapted from Ref. [3].

Inflationary period. The inflationary period describes a time in cosmic evolution when
the Universe expanded exponentially. This huge expansion was caused by the so-called
inflaton field. The period potentially took place between 10−36 – 10−32 s after the Big Bang
1The term early Universe refers in this thesis to cosmological times between the key-events of the Big Bang
(0 s) and the CMB decoupling (≈ 380 kyr).

1



2 Chapter 1. Introduction

and is physically described by inflation theories. The enormous expansion within this short
time range generated a dilution of nearly all forms of energy and therefore cooled down
the Universe extremely. At the end of inflation the potential energy of the inflaton field
was transferred into the generation of particles of the standard model of particle physics.
Interactions between the produced particles heated up again the Universe (beginning of
the thermal history of the Universe). The inflationary period and the following reheating
are described more detailed in Sec. 1.1.2.

Radiation domination. The epoch after inflation was dominated by radiation and lasted
60 kyr. At the very beginning of the epoch, less than 20 ps after the Big Bang, the temper-
atures of the Universe were extremely high – sufficiently high to unify the electromagnetic
and weak interaction into the electroweak force. All particles of the standard model of
particle physics were massless at these temperatures, i.e., they solely contributed to the
radiation content of the Universe. When the Universe expanded further and hence cooled
down the Higgs mechanism provided the masses of the elementary particles. This mech-
anism triggered the electroweak (EW) phase transition, which took place at temperatures
around 100 GeV, corresponding to ≈ 20 ps after the Big Bang. At cosmological energies
below ≈ 100 GeV and above ≈ 150 MeV the Universe was hot enough for quarks to be
asymptotically free and to form a quark-gluon plasma. Below temperatures of ≈ 150 MeV,
which corresponds to the time 20 µs, the color confinement prevailed and the quarks com-
bined to baryons and mesons. This transition is known as the quantum chromodynamics
(QCD) phase transition. Subsequently, some particles with relatively low interaction rates
decoupled from the local thermal equilibrium. The first were the weakly interacting neutri-
nos, which froze out at ≈ 1 MeV (≈ 1 s). Note that the decoupling of potential dark matter
particles is assumed to took place around energies of order hundred MeV. At temperatures
around 500 keV (6 s) the Universe already cooled down sufficiently to exponentially sup-
press the production of electron-positron pairs. The next milestone in cosmic evolution is
known as the Big Bang Nucleosynthesis (BBN) and took place ≈ 3 min (≈ 100 keV) after
the Big Bang. During this synthesis the nucleons combined to form bound systems, i.e.,
the first complex atomic nuclei formed, namely helium (≈ 25%), lithium and other light
elements (minor). Eventually, after around 60 kyr (0.75 eV) the energy form of matter
became the dominant component.

Matter domination. The process of the first formation of atoms, which is important
for studies of the early Universe, took place at temperatures between ≈ 0.23 − 0.33 eV
(≈ 260 − 380 kyr) within the epoch of matter domination. It is commonly known as
(re-)combination. The associated decoupling of photons freed the light of the Cosmic
Microwave Background radiation (CMB). Figure 1.2 shows the temperature deviations
(anisotropies) ∆T of order ∆T/TCMB ∝ O(10−5) from a nearly perfectly constant CMB of
temperature TCMB = 2.7 K as observed by the Planck collaboration. The correlation struc-
ture of these anisotropies contains physical information about the early Universe. Before
recombination the Universe was opaque as photons were frequently scattered by free elec-
trons via Thompson scattering, see Fig. 1.3. After the formation of neutral hydrogen atoms
the abundance of free electrons decreased and light propagated freely through space for
the first time. At this stage of cosmic evolution the epoch of the dark ages of the Universe
started. It is termed dark because during its period in cosmic chronology no light-emitting
objects existed, populated the Universe, with the exception of the 21 cm spin-flip line of
hydrogen. Until the beginning of the dark ages the structure (density perturbations) of the



1.1. The early Universe 3

Figure 1.2.: Map of the CMB temperature anisotropies as observed by Planck [8].

Universe can mathematically be described as small density perturbations around a homo-
geneous background. As structures grew further under the influence of gravity first stars
and galaxies formed. These objects ejected high energetic radiation that in turn reionized
the neutral hydrogen in the Universe. The epoch related to this process took place around
100 − 400 Myr (2.6 − 7.0 meV) after the Big Bang and is called reionization. Eventually
more and more matter collapsed gravitationally and galaxies formed significantly. Early
representatives of the first galaxies have recently been found around the age of 750 Myr
(1.9 meV) after the Big Bang.

Dark energy domination. After the Universe reached the age of around 9 Gyr (0.33 meV)
dark energy became the dominant component. Roughly at the same time the solar system
formed. The present Universe is 13.8 Gyr old, corresponding to a temperature of 0.24 meV.
Extrapolating the current cosmic evolution, i.e. including a cosmological constant Λ in the
Friedmann equation, Eq. (1.17), the Universe will expand further and hence will become
cooler2. Most of the baryonic mass will have been burned within stars and only stellar
remnants will be left. Energy will mainly be produced by (hypothetical) proton decays
and particle annihilations (estimate: 1015−1037 yr). After the epoch of proton decay only
black holes will have survived, which will also dissipate by the emission of Beckenstein-
Hawking radiation (estimate: 1038 − 10100 yr). When all black holes will have evaporated
the Universe will only contain radiation with enormously large wavelengths (due to the
spacetime stretch, caused by dark energy) and products of protonic decay. At this stage
the Universe will become dark again (estimate: 10100 yr).
A summary of the particular epochs of the Universe with corresponding orders of mag-

nitude (energy, redshift, and time) can be found in Tab. 1.1.

2Note that we are leaving now the cosmological standard model, describing the idea of the Big Freeze.
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Figure 1.3.: Illustration of the respective interactions of the constituents of the Universe with the
background metric and each other. Figure adapted from Ref. [3].

1.1.2. Beyond the standard model – cosmic inflation

In the previous section the thermal chronology of the Universe started with the radiation
dominated epoch that includes the EW unification (occurring roughly 20 ps after the Big
Bang). Obviously, though, there must be epochs before this, e.g., when the unification of
the EW and strong interaction occurred. The epoch of this unification should be described
by the so-called Grand Unified Theories (GUT) at ≈ 1015−1016 GeV [9]. Theories designed
to describe these extremely early epochs, however, are lacking more or less a conclusive ex-
perimental confirmation and/or are incomplete and are therefore topics of current research.
One of these theories, commonly believed to describe the period of 10−36−10−32 s after the
Big Bang at energies of order 1015−1016 GeV [10], is cosmic inflation [11]. This theory was
set up to solve, among others3, the mystery of the cosmological principle, i.e., the question
why the observed Universe is nearly perfectly homogeneous and isotropic. Answering this
question led to the well-known horizon problem, which can be easily, qualitatively under-
stood by recalling that Fig. 1.2 shows only the deviations of order O

(
10−5

)
from a nearly

perfectly constant CMB radiation. Detecting only such tiny deviations seems to contradict
the fact that formerly causally connected regions should nowadays not be larger than ≈ 2°
on the sky (if one assumes the thermal cosmic standard model). In the following I will
elaborate on the horizon problem and its solution4 by following Ref. [3].

3Inflation was originally set up to solve the magnetic monopole problem [12]. At the same time inflation
solves other major problems, e.g. the flatness problem. These problems can be found in many textbooks
on cosmology and will not be discussed in this thesis.

4Currently, there exists the consensus that the horizon problem has not been solved completely by the
theory of inflation given the current data. For several models of inflation one has to require homogeneity
and isotropy over more than one Hubble sphere already at the beginning of inflation to be in agreement
with current observations [13, 14].
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Stage time t redshift z energy E

(Potential) Inflation 10−36 s

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Neutrino decoupling 1 s 6× 109 1 MeV

Electron - positron annihilation 6 s 2× 109 500 keV

Big Bang Nucleosynthesis 3 min 4× 108 100 keV

Matter - radiation equality 60 kyr 3400 0.75 eV

Recombination/ CMB decoupling 260 – 380 kyr 1000 – 1400 0.23 – 0.33 eV

Reionization 100 – 400 Myr 11 – 30 2.6 – 7.0 meV

First galaxy formation 750 Myr 7 1.9 meV

Dark energy - matter equality 9 Gyr 0.4 0.33 meV

Present time 13.8 Gyr 0 0.24 meV

(Potential) Big Freeze 10100 yr

Table 1.1.: Selected key-processes in the history of the Universe. The stated numbers are approx-
imative (or estimated) orders of magnitudes.

Horizon problem. To understand the horizon problem in more detail it is rewarding
to consider cosmic length and time scales within the so-called comoving frame, where the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric is given by

ds2 = a2(τ)
[
dτ2 −

(
dχ2 + S2

κ(χ)dΩ2
)]
, (1.1)

with a denoting the cosmological scale factor, χ the comoving distance, τ the conformal
time, and κ the curvature parameter. The infinitesimal angular element dΩ2 and the
curvature dependent function Sκ(χ) are defined by

dΩ2 = dΘ2 + sin2(Θ)dφ2 and

Sκ(χ) =


sinh(χ) κ = −1

χ κ = 0

sin(χ) κ = +1

.
(1.2)

Henceforth, for reasons of clarity and comprehensibility, I focus on photons traveling along
radial null geodesics, i.e. ds2 = 0 and dΩ2 = 0. With these constraints Eq. (1.1) simplifies
to

dχ = ±dτ, (1.3)
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Figure 1.4.: Illustration of the horizon problem: although two spatially widely separated patches
of the CMB exhibit the same temperature, they have not been in causal contact before. The scale
of causally connected regions is given by the Hubble radius. Figure adapted from Ref. [3].

describing a trivial relation between the conformal time and the comoving distance. It
is illustrated by the straight lines of the χ − τ diagram in Fig. 1.4. Given Eq. (1.3) the
comoving particle horizon χph is defined by

χph(τ) ≡ τ − τ0 =

∫ t

t0

dt

a(t)
=

∫ a

a0

d ln a (aH)−1 (1.4)

with
H ≡ ȧ

a
≡ da/dt

a
. (1.5)

χph determines the greatest comoving distance traveled by particles moving with the speed
of light between times t0 and t (e.g. today). The involved term (aH)−1 is known as
the comoving Hubble radius (often only termed the horizon). It describes the maximum
distance between particles that are causally connected at a moment of length of the then
typical expansion time-scale. Having defined these quantities the horizon problem can be
understood by considering Fig. 1.4. The figure illustrates the size of the Hubble sphere,
(aH)−3, at the time of CMB emission, which is relatively small compared to the distance
between two spatially widely separated spots on the CMB sky. The light cones of these
two separated CMB spots have not intersected since the beginning of the Universe and
thus have not been in causal contact before. The astronomical observation of two such
spots having almost exactly the same temperature is therefore not understandable within
the cosmic standard model.
A possible solution to the horizon problem would be simply a relatively large particle

horizon compared to the Hubble radius, i.e. χph � (aH)−1, at the last scattering surface.
This relation can be achieved by a period, within which the Universe expands accelerated
and extremely fast – sufficiently fast to obtain a decreasing (comoving) Hubble radius,

d

dt
(aH)−1 = − ä

(ȧ)2
< 0 ⇒ ä > 0. (1.6)
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Figure 1.5.: Illustration of the horizon problem solved by cosmic inflation. All regions of the CMB
have been in causal contact as their light cones intersect. The causal connection is achieved by a
period of a decreasing Hubble radius, referring to a rapid expansion of the Universe. The phase
transition between inflation and the thermal history of the Universe is called reheating. Figure
adapted from Ref. [3].

This requirement is fulfilled in the theory of cosmic inflation and its effect on the Hubble
radius and on the particle horizon is illustrated by Fig. 1.5.
In order to obtain an estimate of the minimal sufficient amount of expansion, caused by

inflation, we require that the scale of the observed Universe today, (a0H0)−1, is smaller
than the Hubble radius before inflation starts, (aiHi)

−1. This means

(a0H0)−1 < (aiHi)
−1. (1.7)

To calculate the inflationary expansion factor, the ratio (aiHi)
−1/(afHf)

−1, where subscript
f denotes the end of inflation, is considered first. For a rough estimate [3] the epochs of
matter and dark energy domination are neglected and radiation domination between the
end of inflation and today is assumed, where the Hubble parameter is proportional to a−2.
Under the assumption that inflation will end before the EW phase transition – at energy
scales of GUT, which is roughly of order 1015 GeV – the factor between the Hubble radius
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at the end of inflation and at its beginning is roughly

(aiHi)
−1

(afHf)−1
>

(a0H0)−1

(afHf)−1
≈ af
a0

(
a0

af

)2

=
Tf
T0
∝ 1027 > e65. (1.8)

To translate the ratio of scale factors to temperatures the redshift relation Tf/T0 = (1+z) =
a0/af was used. As will be shown in the next paragraph, inflation corresponds to an
exponential expansion of space,

a(t) ∝ exp(tH), with H ≈ const. (1.9)

This means Hi/Hf ≈ 1 and the here estimated amount of inflationary expansion, af/ai, is
larger than 65 e-folds.

Inflationary physics. As estimated above inflation is supposed to stretch the Universe by
at least 65 e-folds. But what drives this enormous expansion? In the following I elaborate
on the theory of the basic physical mechanism behind inflation to obtain a more concrete
idea of it.
As an illustrative representative of the inflationary mechanism we consider a (minimally

coupled5) single scalar field φ – the inflaton – with related potential V (φ), being located
apart from its potential minimum, see Fig. 1.6. Such a situation within curved spacetime
can be described by the action [3, 15]

S =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ− V (φ)

)
. (1.10)

The symbol gµν denotes the metric tensor of general relativity and g its determinant with
sgn(g) < 0. To obtain the equation of motion of φ one has to require δS = 0, yielding

∇α∇αφ+
dV

dφ
= 0, (1.11)

which is the covariant6 form of the Klein-Gordon equation. Next, the scalar field is as-
sumed to consist of a time dependent but spatially constant (due to symmetries of FLRW
metric [3]) background field φ0(t) and some quantum fluctuations δφ(t, x) with spatial
dependence, i.e.,

φ(t, x) = φ0(t) + δφ(t, x). (1.12)

For an illustration of the inflaton field with related potential see again Fig. 1.6. To keep it
simple first, only the constant background field is considered. The evaluation of Eq. (1.11)
for a homogeneous and isotropic Universe, described by the FLRW metric, yields the
equation of motion of the background field,

φ̈0 + 3Hφ̇0 + dV/dφ0 = 0. (1.13)

5In general, one has the gauge freedom to add a term to Eq. (1.10), which induces a coupling between φ
and the background gravitational field. Minimally coupled means we chose a gauge, in which this term
vanishes [13].

6Note that also derivatives are covariant, i.e. metric dependent, and therefore ∇α∇α φ =
1√
−g∂µ (

√
−ggµν∂νφ). They depend in particular on the Christoffel symbols, which again depend on

the metric.
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end reheatinginflation

Figure 1.6.: The inflaton field consisting of a constant background field and fluctuations with
related potential. Inflation occurs in the shaded region, where the potential is relatively flat. As
the inflaton “rolls down” the steeper part of the potential the potential energy is transferred into
kinetic energy and the inflaton will oscillate around the potential minimum. It eventually decays
into components of the standard model of particle physics. Figure adapted from Ref. [3].

For the evolving scalar field φ0 within the potential the gradient of the potential acts like a
force, while the expansion of the Universe acts like a friction [3]. To see in which cases the
dynamics of the scalar field lead to an accelerated expansion the energy momentum tensor
has to be calculated first. The insertion of Eq. (1.10) into the definition of the energy
momentum tensor within curved spacetime yields [15]

Tµν ≡
2√
−g

δS

δgµν
= ∂µφ0 ∂νφ0 − gµν

(
1

2
gαβ∂αφ0 ∂βφ0 − V (φ0)

)
. (1.14)

Note in particular that the first term in parenthesis is only different from zero in the
time-time component, i.e. α = β = 0. The same applies for the first term considering
µν-indices. By evaluating Eq. (1.14) separately for the time-time component, T00 = ρφ0 ,
and space-space components, Tij = −gijpφ0 , one obtains [3]

ρφ0 =
1

2

(
dφ0

dt

)2

+ V (φ0),

pφ0 =
1

2

(
dφ0

dt

)2

− V (φ0).

(1.15)

Here, ρφ0 denotes the density of the scalar field and pφ0 its pressure. If one further requires
the slow-roll condition7 √

V (φ0)�
∣∣∣∣dφ0

dt

∣∣∣∣ (1.16)

7 The two commonly used slow-roll parameters ε and η are also directly related to the potential, ε ∝
(dV/dφ)2 and η ∝ d2V/dφ2.
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the pressure is given by pφ0 ≈ −ρφ0 < 0. A negatively valued pressure seems unintuitive
in the first place, but is well-known in cosmology by the effect of the cosmological constant
Λ on the evolution of the Universe. A positive cosmological constant implies in particular
the presence of a component with negative pressure that leads to an exponential expansion
of spacetime, a(t) ∝ exp(Ht), with constant H.
The expansion behavior of a Universe, dominated by a cosmological constant, can be

studied by considering the evolution equation of the scale factor, which is described by the
Friedmann equation, (

ȧ

a

)2

=
8πGN

3
(ρκ + ρr + ρm + ρΛ) , (1.17)

where GN denotes Newtons gravitational constant and ρκ,r,m,Λ the curvature8, radiation,
matter, or cosmological constant density, respectively. For a Universe dominated by ρΛ =
Λ/(8πGN ) the Friedmann equation yields a(t) ∝ exp(

√
Λ/3 t) = exp(Ht). A space with

such an expansion behavior is called de Sitter space.
To understand the negative pressure implication of a positive cosmological constant Λ,

we consider Eq. (1.14) and use the slow-roll condition, Eq. (1.16). The energy momentum
tensor simplifies to Tµν ≈ V (φ0)gµν ≈ −pφ0gµν and indeed, a component with negative
pressure behaves like a positive Λ within the Einstein equations [3],

Rµν −
1

2
gµνR = 8πGN

(
Tµν +

Λ

8πGN
gµν

)
. (1.18)

This means the cosmological constant can be identified with Λ = 8πGNV (φ0) = −8πGNpφ0 .
For the sake of completeness, Rµν represents the Ricci tensor and R the Ricci scalar.
As a consequence of the discussion above, a (minimally coupled) scalar field slowly rolling

down a flat potential leads to an approximately exponential expansion of spacetime. The
inflationary phase, however, has to stop after roughly 65 e-folds of expansion. Therefore,
during this phase, the space coincides not perfectly with a de Sitter space and is commonly
called quasi de Sitter space.

The seeds of structure. Up to now I discussed the classical case by considering the in-
flaton field without fluctuations. To figure out how the fluctuations evolve during inflation
they are included in the following. For this purpose variations of the action δS [Eq. (1.10)]
have to be calculated to the desired order in cosmological perturbation theory to finally
obtain the equation of motion of the inflaton field. Performing this calculation turns out
to be a bit involved, which is the reason why this part is skipped here. In lieu thereof a
qualitative explanation of the evolution of the inflaton field including fluctuations is pro-
vided, further following Ref. [3]. For a fully quantitative description of the cosmological
perturbation theory consider Refs. [16, 17].
During inflation there appear (Gaussian) zero point fluctuations of the inflaton, δφ. This

means statistically there are regions of the Universe where inflation lasted longer and re-
gions where it stopped earlier. This statistical process produces local density perturbations
at the end of inflation since some regions get more diluted than others. To be precise, the
inflaton fluctuations are produced inside the (comoving) Hubble radius, which decreases
during inflation. A specific fluctuation with Fourier mode k exits the Hubble radius at a
particular point of time during the inflationary expansion, see Fig. 1.7. By crossing the
Hubble radius at k = aH the fluctuation gets conserved. At the time of horizon crossing
8Current measurements [7] are consistent with ρκ ≈ 0.
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Figure 1.7.: Origin and evolution of the curvature perturbations. Zero-point fluctuations of
the inflaton field, generated during inflation, exit the horizon (Hubble radius (aH)−1) while the
Universe expands exponentially. After the end of inflation (reheating) the Hubble radius increases
and the curvature perturbations re-enter the horizon as real perturbations. These primordial
perturbations are imprinted in the CMB anisotropies and initiate the process of cosmic structure
formation. Illustration adapted from Ref. [3].

it is beneficial to change from the inflaton fluctuations to the so-called comoving curvature
perturbations R, since they are conserved outside the horizon. After inflation, the Hubble
radius increases again and the perturbation with Fourier mode k enters the Hubble radius
as a real physical curvature perturbation. Perturbations of different scales exit during in-
flation and re-enter after inflation the Hubble radius at different times. These curvature
perturbations, which are related to gravitational potentials [see chapter 3], interact with the
composites of the Universe (see again Fig. 1.3). In consequence of this interaction between
baryonic matter, radiation, dark matter and gravitational potentials the anisotropies of the
CMB are eventually produced. After CMB decoupling, matter clumped more efficiently
and cosmic structures grew under the influence of gravity. This means the curvature per-
turbations finally serve as the seeds of structure formation in the late Universe. Therefore
inflation provides also a natural explanation of the origin of cosmic structures.
The seeds of structure – the initial conditions for structure formation – obey almost com-

pletely Gaussian statistics when considering simple single field, slow-roll models of inflation
as done in the above discussion [18]. Gaussian distributions are completely determined by
the two point correlation function, the so-called power spectrum in Fourier space (assum-
ing statistical isotropy and homogeneity). The power spectrum, in turn, describes with
how much power/amplitude each Fourier mode contributes to the signal. In the simplest
inflationary case the Gaussian fluctuations δφ exit the horizon independently, without any
coupling, where they freeze. It can be shown, that the related, conserved, dimensionless,
power spectrum ∆2

δφ at horizon crossing, k = aH, is given by

∆2
δφ(k) ≈ H2

4π2

∣∣∣∣
k=aH

. (1.19)

Recalling that H ≈ const. during inflation yields ∆2
δφ ≈ const. and therefore all Fourier
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modes contribute equally to the (dimensionless) power spectrum. The scale-invariant power
spectrum of Eq. (1.19) is called Harrison-Zel’dovich spectrum. As already mentioned above,
it is common to switch the variables from δφ to the comoving curvature perturbation R
at horizon crossing since its statistics are conserved until the perturbations re-enter the
horizon (see again Fig. 1.7). Additionally including the freedom for small deviations from
the Harrison-Zel’dovich spectrum we arrive at a frequently used form of the power spectrum
of R,

∆2
R(k) ≈ As

(
k

k∗

)ns−1

, (1.20)

often called primordial scalar power spectrum. Such deviations from a constant power
spectrum are included, because H is a slowly varying function of time and only ap-
proximately a constant (the space-time metric is nearly de Sitter, but not exactly). As
represents the primordial scalar amplitude, ns the scalar spectral index, and k∗ denotes
the so-called pivot scale. This relatively simple power-law parametrization enables com-
parisons with observations. The actual values, derived by the Planck collaboration, are
ln
(
1010As

)
= 3.089 ± 0.036 and ns = 0.968 ± 0.006 for the pivot scale k∗ = 0.05Mpc−1

[19]. These results confirm the prediction of the simplest inflation models, stating that
ns < 1.
In summary, inflation predicts nearly perfectly Gaussian curvature perturbations with

an approximately scale-invariant power spectrum. The curvature perturbations are di-
rectly related to density perturbations and serve as the seeds of structure formation in the
Universe.

Reheating. The end of inflation is followed by an epoch named reheating. By the infla-
tionary expansion nearly all forms of energy must have been extremely diluted, implying
that the Universe cooled down significantly during inflation. Consequently, there must
have been a mechanism at the end of inflation that transforms the energy stored in the
inflationary potential into the generation of particles of the standard model of particle
physics [3], producing a dense thermalized state of the Universe. Otherwise, the thermal
evolution of the Universe would not have started and the epochs of radiation and matter
domination, described in Sec. 1.1.1, would not have existed. Assume, for simplicity, that
the inflaton potential has the shape illustrated by Fig. 1.6. As discussed in the previous
paragraphs, inflation takes place in the shaded region, where the potential is flat. As the
inflaton “rolls down” the steeper part of the potential, inflation stops and the potential
energy gets transformed into kinetic energy of the inflaton field. Around the potential
minimum the inflaton starts to oscillate. The local shape of the potential in the vicinity of
its minimum can be approximated by V (φ) = 1

2m
2φ2. Plugging this local parameteriza-

tion of V into Eq. (1.13) yields the equation of motion of the inflaton around the potential
minimum,

φ̈+ 3Hφ̇+m2φ = 0, (1.21)

which represents a damped harmonic oscillator with undamped frequency m. The oscillat-
ing inflaton field, now storing the energy of the potential, is assumed to decay subsequently
into the elements of the standard model of particle physics. The interactions between the
decay products are heating up the Universe (entropy generation) until thermal equilibrium
is reached. After this process the epoch of radiation domination begins and with it the
thermal evolution of the Universe. An illustration of the history of the Universe including
inflation and reheating can be found in Fig. 1.8.
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1.2. Motivation and outline of the thesis

The introduced theory of an inflationary phase in the early Universe seems to solve, among
others, the horizon problem and supplies a natural explanation of the origin of cosmic
structures. To judge whether inflation theory is true its predictions have to be confronted
with observational data. For this purpose one can use the CMB or the large-scale structure
of the Universe (LSS). The former carries information of the curvature perturbations at
the epoch of recombination, the latter represents the more recent stages of the evolution
of the cosmic structures. Although this thesis will mainly focus on the CMB, parts of the
here developed methods can be applied to LSS data as well. Whenever this is the case, it
will be stated.
Besides the validation of the inflation theory itself, the specific kind of inflation model

is of interest. There exist a huge variety of inflationary models, ranging from different
inflaton potentials over distinct inflaton couplings [first term in Eq. (1.10)] to the presence
of multiple coupled inflaton fields. Many of these models produce unique statistics of the
curvature perturbations. Therefore, the respective inflation models can be discriminated
by, e.g., the shape of the primordial power spectrum or specific deviations from Gaussian-
ity. By inferring such statistical quantities from data one would be able to constrain the
variety of actual still possible inflation models. This opportunity immediately suggests the
development of novel statistical methods, which are able to infer statistical properties of
early-Universe signals (generated by inflation) from observational data. Such methods are
developed in this work.
As stated before, when speaking about observational data this thesis mainly refers to

CMB observations, which are measured by terrestrially or extraterrestrially based tele-
scopes. An entity of cosmological observations is that we observe the Universe and in
particular the CMB always from the same point of view. Hence the observed statistical
realization of the CMB, and in general the realized morphology of the Universe, stays the
same for all human observations. Having only one realization of the Universe obviously
makes the inference procedures more difficult. In other words, we are only able to infer
quantities conditional to the observed data and to the prior assumptions done, since we
cannot marginalize over infinite data realizations (as approximately possible in other re-
search fields like particle physics, where an experiment can be repeated as often as desired).
For such situations Bayesian statistics are predestinated, because they naturally involve
prior assumptions, and are capable of consistently dealing with few data (in the sense of
having few realizations of it).
In cosmology, and very often in all other fields of natural science, one is faced with the

situation of having a discrete data set and thus a finite number of degrees of freedom,
but is interested in inferring a physical field containing an infinite number of degrees of
freedom. For such situations, information field theory (IFT) has been developed within the
framework of Bayesian statistics [21]. The necessary parts of this theory, used to follow the
major derivations of the here presented inference methods, are introduced at the beginning
of each chapter of this work.
The thesis is organized as follows. The second chapter, Chap. 2, is named Signal infer-

ence with unknown response: Calibration-uncertainty renormalized estimator and includes
a consistent advancement of the theory of self-calibration in the framework of IFT. We
consciously start with this topic since every physical experiment is affected by its cali-
bration. After addressing this generic topic we introduce a method, able to reconstruct
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specific parameters of inflation by exploiting higher-order statistics of the CMB. We also
present an approach to reconstruct the primordial scalar power spectrum using CMB data.
This third chapter, Chap. 3, has the name Generic inference of inflation models by non-
Gaussianity and primordial power spectrum reconstruction. A required intermediate stage
of the methods of Chap. 3 is the reconstruction of the primordial scalar potential9. In
Chap. 4, All-sky reconstruction of the primordial scalar potential from WMAP temperature
data, such a reconstruction has been done. Finally, in Chap. 5: Stochastic determination of
matrix determinants, we develop a novel method to calculate the determinant of an implic-
itly defined matrix via statistical sampling. Such calculations are required, for instance,
in Chap. 3, when considering significant deviations from Gaussianity. A summary of the
thesis as well as an outlook can be found in Chap. 6.
Note that throughout the thesis there appear a few double occupied acronyms since I

do not want to change the exact wording of the published works, which are reproduced in
these chapters. Within each chapter the acronyms are consistent, though.

9The primordial scalar potential is related to the comoving curvature perturbations, see Sec. 3.
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Figure 1.8.: Illustration of the evolution of the Universe. Taken from Ref. [20].





2. Signal inference with unknown
response: Calibration-uncertainty
renormalized estimator

Note: This chapter has been published in Phys. Rev. E 91, 013311 (2015) [22].

2.1. Introduction

2.1.1. Motivation

Data analysis is the link between theory and experiment, wherein a signal has to be in-
ferred from measured data. For this purpose the transformation of a signal to data, the
measurement response, has to be understood precisely. The reconstruction of this response
is called calibration.
In the most simple case of a time independent instrument response, the calibration can

be determined by measuring an a priori well known signal in a regime with neglectable
noise level. This is commonly called external calibration. However, the assumption of time
independency cannot be accepted in the majority of cases. Of course the time dependency
caused by, e.g., environmental factors, periodicities and systematics, or the signal itself,
can be estimated with utmost effort. The resulting calibration, however, has still to be
extrapolated into future time, where the real measurement will be performed and where
these influences will not be known exactly. What might be known, however, are their
statistics. The resulting uncertainty consequently affects the signal reconstruction and has
to be taken into account.
There are methods, which improve the calibration by iteratively calibrating on a signal

reconstruction and then improving the reconstruction using the new calibration. Such
self-calibration (selfcal) schemes are widely in usage. They can, however, be prone to
systematic biases since signal and calibration are partly degenerate, i.e., a feature in the
data could be caused by either of them and it is not guaranteed that the selfcal scheme
does the correct choice automatically.
An improved selfcal scheme, which takes signal uncertainties in the calibration step into

account was presented in Ref. [23]. Since also this new selfcal is an approximative solu-
tion to the complex inference problem, we ask if there is room for further improvement
using information field theory (IFT) [21]. To this end we develop a calibration uncertainty
renormalized estimator (CURE) for a signal, which incorporates calibration uncertainties
successively in a so-called renormalization flow equation. In comparison to existent ap-
proaches this method is non-iterative. For a review and discussion of previous work on
existent calibration methods we point to Refs. [23, 24].

17



18
Chapter 2. Signal inference with unknown response: Calibration-uncertainty

renormalized estimator

2.1.2. Structure of the work

The remainder of this work is organized as follows. In Sec. 2.2 we review the basics of the
free and interacting IFT with focus on the latter. Sec. 2.3 represents the main part of the
paper, where the calibration problem is introduced and CURE is derived. The basic ideas
as well as the main formulae of alternative selfcal schemes are also presented within this
section. In Sec. 5.2.2 the performance of several signal reconstruction methods is studied
within a numerical toy example. Results are summarized in Sec. 2.5.

2.2. Information field theory

To follow the derivation of an estimator with renormalized calibration uncertainty in the
framework of IFT one has to be familiar with the concepts of interacting IFT (see in
particular Secs. 2.2.2, 2.2.3). Thus, a brief review might be helpful, but can be skipped by
an advanced reader. For this purpose we basically follow the Refs. [21, 25], where a more
detailed description of IFT can be found.

2.2.1. Basic formalism & free theory

Typically, a signal has to be inferred from data with the challenging question, how to do
this in an optimal1 way? To reasonably answer this questions we first have to agree on a
particular data model.
Within this work we assume that the data can be expressed by a discrete data tuple,

d = (d1, . . . , dm)T ∈ Rm, m ∈ N, which is related to a signal s by

d = Rs+ n, (2.1)

where R is a linear response operation acting on the signal, and n = (n1, . . . , nm)T ∈ Rm
denotes some measurement noise. Contrary to data and noise, the signal s ≡ s(x), x ∈ U
is considered to be a continuous quantity over some Riemannian manifold U , i.e., a physical
(scalar) field. The linearity of the signal response, which transforms the continuous signal
into data space, is valid for many physical measurements, e.g., observations of the cosmic
microwave background and large scale structure in astronomy (cosmology), spectroscopy
in different fields of physics, or medical imaging.
We further assume the signal and noise to be uncorrelated, P(s, n) = P(s)P(n), and

primarily Gaussian, i.e., P(s) = G(s, S) and P(n) = G(n,N) with related covariances
S =

〈
ss†
〉

(s|S)
and N =

〈
nn†

〉
(n|N)

, respectively. Here, we implicitly introduced the
notation

G(a,A) ≡ 1√
|2πA|

exp

(
−1

2
a†A−1a

)
, and

〈 . 〉(a|A) ≡
∫
Da . P(a|A),

(2.2)

where † denotes a transposition and complex conjugation, ∗. The appropriate inner product
of two fields {a, b} is defined by a†b ≡

∫
U d

dimUx a∗(x)b(x). If the conditions described
above (known linear response, Gaussian signal and noise with known covariances) are met,
we term the theory a free theory.
1Optimal with respect to, e.g., minimizing the L2-error.
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It is often convenient and common to focus on logarithmic probabilities by relating Bayes
theorem [26] to statistical physics,

P(s|d) =
P(s, d)

P(d)
≡ 1

Z
exp [−H(s, d)] . (2.3)

Here, we introduced the information Hamiltonian

H(s, d) ≡ − ln [P(s, d)] , (2.4)

and the partition function

Z(d) ≡ P(d) =

∫
Ds exp [−H(s, d)]. (2.5)

Still considering the above free theory we find

H(s, d) = H0 − j†s+
1

2
s†D−1s, and

Z(d) =
√
|2πD| exp

(
1

2
j†Dj −H0

)
,

(2.6)

with the abbreviations

H0 =
1

2
ln |2πN |+ 1

2
ln |2πS|+ 1

2
d†N−1d,

D−1 = S−1 +R†N−1R, and

j† = d†N−1R,

(2.7)

where the so-called information propagator, D, and the information source, j, have been
introduced. | . | denotes the determinant.
To exploit the whole machinery of statistical physics we additionally include a moment

generating term, J†s, into the partition function,

Z(d, J) =

∫
Ds exp

[
−H(s, d) + J†s

]
. (2.8)

The last definition permits to express the connected correlation functions (= cumulants)
of a probability density function (PDF) via functional derivatives [21],

〈s(x1) . . . s(xn)〉c(s|d) ≡
δn ln [Z(d, J)]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (2.9)

Since we consider a Gaussian signal, its mean is equivalent to the well known Wiener filter
[27] solution,

〈s〉(s|d) = Dj ≡ mw. (2.10)

Its two point correlation function describes the uncertainty of the reconstruction,
〈
ss†
〉c

(s|d)
=〈

(s−mw)(s−mw)†
〉

(s|d)
= D , and all cumulants with n > 2 vanish. Therefore, the pos-

terior is Gaussian and given by

P(s|d) = G(s−mw, D). (2.11)
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2.2.2. n-th order perturbation theory

Within the free theory we required the noise and in particular the signal to be Gaussian.
However, this requirement cannot be met in some cases, e.g., in case noise or response
are signal dependent, or simply a non-linear signal field. In the framework of IFT these
scenarios can often2 be described by a Taylor-expanded Hamiltonian [21] composed of a
free part, Hfree (Eq. (2.6)), and a so-called interacting part, Hint,

H = Hfree +
∞∑
n=0

1

n!
Λ(n)

[
s(n)

]
︸ ︷︷ ︸

≡Hint

, (2.12)

where the deviation from Gaussianity is encoded in the anharmonic terms, n > 2. The
term Λ(n)

[
s(n)

]
denotes a complete, fully symmetric3, contraction between the rank-n

tensor Λ(n) and the n fields s(n) = (s1, . . . , sn). If a decent estimate m0 is known, one
should Taylor-expand the Hamiltonian around this reference field m0 in terms of residuals
φ ≡ s − m0. A well working estimate is, for instance, the Wiener filter solution of the
free theory, Eq. (2.10). Using this reference field expansion often permits to truncate the
Taylor-expansion earlier, since the anharmonic terms become smaller.
Analogously to the free theory we define the partition function,

Z(d, J) =

∫
Ds exp

[
−H(s, d) + J†s

]
=

∫
Ds exp [−Hint] exp

[
−Hfree + J†s

]
= exp

(
−Hint

[
δ

δJ

])∫
Ds exp

[
−Hfree + J†s

]
≡ exp

(
−Hint

[
δ

δJ

])
Zfree

=

(
1−Hint

[
δ

δJ

]
+

1

2!
H2

int

[
δ

δJ

]
− . . .

)
Zfree.

(2.13)

In principle, Eqs. (2.9) and (2.13) enable to calculate all correlation functions of a PDF
perturbatively. These calculations, however, are very uncomfortable and lengthy. For-
tunately, there exists a well known diagrammatic treatment in analogy to quantum field
theory and thermal field theory [21]. E.g., including the first two correction terms, the
signal mean m is given by

mx = + + + . . .

= Dxy

(
jy −

1

2
Λ(3)
yzvDzv −

1

2
Λ(3)
yzv(Dj)z(Dj)v

)
+ . . . ,

(2.14)

where the ordering of diagrams corresponds to those of the equations and dots (. . . ) rep-
resenting the residual Feynman-series of correction terms. The external dots (•) represent
2See Sec. 2.2.3 for cases in which such a treatment is not sufficient.
3Λ(n) ≡ 1

n!

∑
π Λ

(n)

π(x1,...,xn), with π representing every permutation of {1, . . . , n}.
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source terms, internal dots vertices (the tensors Λ(n)), and lines ( ) propagator terms,
respectively. Repeated indices are to be integrated over.
The Feynman rules used in this work, which are necessary to switch between the math-

ematical expressions and the corresponding diagrams, can be found in App. A.1.

2.2.3. Uncertainty renormalization

2.2.3.1. Motivation

The approach of perturbative diagrammatic expansion is supposed to work well if the
Hamiltonian is dominated by linear and quadratic terms. That in turn means that the
the tensors Λ(n) describing the deviation from Gaussianity are sufficiently small for the
Feynman-series to converge. This is, however, not always the case, e.g., within the cali-
bration problem where the signal response cannot be known exactly due to some potential
time-dependencies or uncontrolled systematics. This calibration uncertainty can lead to
large, non-vanishing terms Λ(n) as we show in Sec. 2.3.1 of this paper.
Following the concept of Ref. [25], we can circumvent such a problem by including succes-

sively more and more small portions of, e.g., calibration uncertainty into a signal inference
equation. The basic idea is to include only a sufficiently small amount of uncertainty per
step to ensure the non-Gaussian (interaction) terms to be weak. Finally, this process re-
sults in a renormalized propagator, D̃, and information source, j̃. This process is called
uncertainty renormalization [25].

2.2.3.2. Concept

For reasons of clarity and comprehensibility we skip the most general derivation and jus-
tification of uncertainty renormalization, which can be found in Ref. [25], and focus more
on the pragmatic procedure thereof. In the following we consider the Taylor-expanded,
effective Hamiltonian to be of the form of Eq. (2.12). To suppress the strength of the
non-Gaussian contributions we include a so-called expansion parameter, δt � 1, into the
Hamiltonian,

H = Hfree + δt

∞∑
n=0

1

n!
Λ(n)

[
s(n)

]
, (2.15)

and concentrate on this new Hamiltonian for a moment. For an appropriately small δt
the interaction terms become sufficiently small and the diagrammatic expansion of Sec.
2.2.2 is justified again. Hence, by including the first correction terms into the propagator,
D → D̃δt, and into the information source, j → j̃δt, we obtain

D̃δt = + δt

(
+ + . . .

)
+O(δt2),

Dj̃δt = + δt

(
+ + . . .

)
+O(δt2),

(2.16)

where the dots (. . . ) represent all diagrams of order O(δt), i.e., all possible one-vertex
diagrams. This way, t ∈ [0, 1] can be identified with a pseudo-time, which measures the
accumulated uncertainty correction to the information propagator and source, and the
expansion parameter δt represents the time step in which D and j are increased from their
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intermediate values, Dt and jt, to their one-step-renormalized (but not final!) values Dt+δt

and jt+δt, i.e.

Dt → Dt+δt, and
jt → jt+δt.

(2.17)

We want to emphasize that δt cannot simply be set to unity to obtain the fully renor-
malized propagator, D̃, because this step would violate the justification of our perturbative
expansion (see Sec. 2.2.3.1). However, a single step of this analytical resummation can be
infinitesimally small, permitting for the formal definition of the derivatives [25]

dDt

dt
≡ lim

δt→0

Dt+δt −Dt

δt
and

djt
dt
≡ lim

δt→0

jt+δt − jt
δt

,

(2.18)

whereby the renormalization flow equations can be formulated,

dDt

dt
= + + . . .

D
djt
dt

= + + . . . ,

(2.19)

which is a system of coupled differential equations for operators with boundary values
Dt=0 = D and jt=0 = j. By solving these equations one obtains the fully renormalized
quantities D̃ = Dt=1, j̃ = jt=1, and the renormalized Wiener filter formula

m̃ = D̃j̃. (2.20)

This means, by solving Eq. (2.19), we finally calculate a Gaussian approximation to the
correct posterior mean of s, P (s|d) ≈ G(s− m̃, D̃).

2.3. Self-calibration

Now we address the calibration problem, i.e., how to infer a physical signal field given
a data set without precise knowledge of the signal response. We consider the case in
which an external calibration is not possible (see Sec. 2.1). Thus, the instrument has to
be self-calibrated during the measurement process. If we had absolutely no information
about the signal response (how a measurement device transforms the signal into data)
there would be absolutely no chance to infer the signal appropriately. However, if we
have some information about the statistics of the response, e.g., the two point correlation
function, this task becomes solvable. For this purpose we introduce the CURE method
in the framework of IFT (Sec. 2.3.1) and review already existing methods (Sec. 2.3.2) to
compare it against.
The aim is to calculate an optimal4 estimator for the signal (or in general the moments
〈s . . . s〉(s|d)) given the data without exact information of the calibration. A way to approach

4Optimal in the sense of minimizing the L2-error.
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this challenge is to consider the unknown calibration as a nuisance parameter, i.e., to
marginalize over the calibration when calculating the signal posterior,

P(s|d) =

∫
Dγ P(s, γ|d) =

∫
Dγ P(d, γ|s)︸ ︷︷ ︸
P(d|s)

P(s)

P(d)
, (2.21)

which involves the calculation of the calibration marginalized likelihood. To do so, we
assume the response to be a linear function in the calibration coefficients γa with Gaussian
statistics, i.e. Rγ ≈ R0 +

∑
a γaR

a. The assumption of Gaussianity is appropriate as long
as we have a priori no information about higher moments of γ, 〈γ1 . . . γn〉(γ) with n > 2.
The linearity can be considered as a first order approximation around γ0 = 0 in γ,

Rγ = R(γ0) +
∂R(γ)

∂γa

∣∣∣∣
γ=γ0

(γ − γ0) +O(γ2)

= R0 +
∑
a

γaR
a +O(γ2).

(2.22)

Under these assumptions one obtains [23, 28]

P(d|s) =

∫
Dγ P(d|s, γ)P(γ)

=

∫
Dγ G

(
d−

(
R0 +

∑
a

γaR
a

)
s,N

)
G (γ,Γ)

= G

(
d−R0s,N +

∑
ab

ΓabR
ass†Rb

†
)
.

(2.23)

The data variance of this Gaussian likelihood, Eq. (2.23), depends on the correlation
structure of the calibration, Γ =

〈
γγ†
〉

(γ|Γ)
, as well as on the signal s. This, in turn, re-

sults in a non-Gaussian posterior, P(s|d) ∝ P(d|s)P(s), such that calculations of moments
cannot be done analytically anymore. In principle one can adapt posterior sampling tech-
niques like Markov Chain Monte Carlo (MCMC) methods to calculate, e.g., the posterior
mean, mMCMC. These approaches, however, are usually very expensive, which increases
the attractivity of developing (semi-)analytical methods.

2.3.1. Calibration uncertainty renormalized estimator

Now, we apply the concept of uncertainty renormalization to the selfcal problem. According
to Sec. 2.2.3 we introduce an expansion parameter δt� 1 in the ansatz:

P(s|d) ∝ G

(
d−R0s,N + δt

∑
ab

ΓabR
ass†Rb

†
)
P(s). (2.24)

To simplify the notation we define an auxiliary para-meter Ξ ≡
∑

ab ΓabR
ass†Rb

† and
assume a Gaussian signal prior, P(s) = G (s− s0, S), with the a priori mean s0 ≡ 〈s〉(s).
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The Hamiltonian becomes

H(d, s) = − lnP(d, s)

= − ln
[
G
(
d−R0s,N + δt Ξ

)
G (s− s0, S)

]
=

1

2
ln |2πS|+ 1

2
ln |2π(N + δt Ξ)|

+
1

2

(
d−R0s

)†
(N + δt Ξ)−1 (d−R0s

)
+

1

2
(s− s0)†S−1(s− s0).

(2.25)

We can use that the expansion parameter δt is small, i.e. δt Ξ� N (spectrally5), whereby
the approximations

ln |2π(N + δt Ξ)| ≈ ln |2πN |+ tr
(
δt Ξ N−1

)
, and

(N + δt Ξ)−1 ≈ N−1 −N−1δt Ξ N−1
(2.26)

can be made. Using Eqs. (2.25), (2.26) yields

H(d, s) = Hfree + δt

4∑
n=2

1

n!
λ(n)

[
s(n)

]
(2.27)

with

Hfree = H0 +
1

2
s†D−1s− j†s,

λ(2)[s, s] =
∑
ab

Γab
(
s†M bas− ja†ss†jb

)
+ 1 perm.,

λ(3)[s, s, s] =
∑
ab

Γab
(

1

2
ja†ss†M b0s+ cc.

)
+ 5 perm.,

λ(4)[s, s, s, s] =
∑
ab

Γab
(
−1

2
s†M0ass†M b0s

)
+ 23 perm.,

(2.28)

with permutations (perm.) with respect to s and the abbreviations

H0 =
1

2
ln |2πN |+ 1

2
ln |2πS|+ 1

2
d†N−1d+

1

2
s†0S

−1s0

D−1 =
(
S−1 +R0†N−1R0

)
,

j† = d†N−1R0 + s†0S
−1,

Mab = Ra†N−1Rb,

ja† = d†N−1Ra.

(2.29)

Terms higher than fourth order in the signal are dropped by making the approximation of
Eq. (2.26).

5Means that ξ†δt Ξ ξ � ξ†Nξ ∀ξ ∈ Rm\0.
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2.3.1.1. Zero point expansion

Since the information Hamiltonian, Eqs. (2.27), (2.28), and (2.29), has the structure of
Eq. (2.15), we can start to derive the renormalization flow equations. First, we consider
(also for pedagogical reasons) the special case, in which the a priori signal mean is zero
but the signal two point statistic is known, i.e., we use a zero centered, Gaussian prior,
P(s) = G(s, S).

Following Sec. 2.2.3, the interaction terms of Eq. (2.27) (Eq. (2.28)) can be absorbed in
a so-called renormalized information propagator D̃δt and information source j̃δt of order
δt. Including this (first) correction these quantities read

(
D̃δt

)
xy

= Dxy + δt

(
−Dxzλ

(2)
zv Dvy −Dxzλ

(3)
zvu(Dj)vDuy −

1

2
Dxzλ

(4)
zvurDvuDry

− 1

2
Dxzλ

(4)
zvur(Dj)v(Dj)uDry

)
+O

(
δt2
)

= + δt

(
+ +

+

)
+O

(
δt2
)
,

Dxy

(
j̃δt
)
y

= Dxy

[
jy + δt

(
− 1

2
λ(3)
yzvDzv − λ(2)

yz (Dj)z −
1

2
λ(3)
yzv(Dj)z(Dj)v

− 1

2
λ(4)
yzvuDzv(Dj)u −

1

3!
λ(4)
yzvu(Dj)z(Dj)v(Dj)u

)]
+O

(
δt2
)

= + δt

(
+ +

+ +

)
+O

(
δt2
)
.

(2.30)

Just as a reminder, the vertices (internal dots) are multiplied by δt while the source
terms (external dots) are independent of δt. In the diagrammatic expansions, Eq. (2.30),
we place δt outside the brackets to underline this dependency. Therefore, to include all
corrections up to order δt, we have to include all possible one-vertex diagrams. It is crucial
to realize that δt cannot simply be set to one in order to obtain the fully renormalized
propagator, D̃, because this step would violate Eq. (2.26). Appart from this it might also
break down the perturbative expansion. However, instead of setting δt = 1 we can interpret
t ∈ [0, 1] as a pseudo-time, which measures the accumulated correction to the information
propagator and source (see Sec. 2.2.3), Dt+δt and jt+δt. Thereby we can formulate the
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renormalization flow equations,

dDt

dt
= lim

δt→0

Dt+δt −Dt

δt

= + + + ,

D
djt
dt

= D

(
lim
δt→0

jt+δt − jt
δt

)
= + + + + ,

(2.31)

which is a system of coupled differential equations for operators with boundary values
Dt=0 = D and jt=0 = j. By solving these equations one obtains the fully renormalized
quantities D̃ = Dt=1, j̃ = jt=1, and the renormalized Wiener filter formula

m̃ = D̃j̃. (2.32)

However, instead of solving the coupled differential equations of Eq. (2.31) we could also
solve the system where dDt/dt is replaced by an equivalently valid equation for dD−1

t /dt
leading to the new differential system

dD−1
t,xy

dt
= λ(2)

xy + λ(3)
xyz(Dtjt)z +

1

2
λ(4)
xuryDt,ur +

1

2
λ(4)
xvuy(Dtjt)v(Dtjt)u,

djt,y
dt

= − 1

2
λ(3)
yzvDt,zv −

1

2
λ(3)
yzv(Dtjt)z(Dtjt)v

− λ(2)
yz (Dtjt)z −

1

2
λ(4)
yzvuDt,zv(Dtjt)u −

1

3!
λ(4)
yzvu(Dtjt)z(Dtjt)v(Dtjt)u.

(2.33)

Solving these equations might simplify the numerical effort in some cases. Afterwards we
invert D−1

t=1 ≡ D̃−1 to finally solve Eq. (2.32).

2.3.1.2. Reference field expansion

There is also the option to introduce a residual field φ = s − m0 with respect to a ref-
erence field, e.g., m0 = Dj0 the Wiener filter solution without information of the proper
calibration, Eq. (2.10). By deriving a Hamiltonian of φ the perturbative expansion gets
more exact while the non-Gaussian terms become smaller. The Hamiltonian then reads

H(d, φ) = H′0 +
1

2
φ†D−1φ+ δt

4∑
n=1

1

n!
Λ(n)

[
φ(n)

]
, (2.34)

where H′0 includes all φ-independent terms6 and Λ(n) denotes the new (vertex-)tensor. Due
to the fact that now already the source term is of O(δt) the diagrammatic expansion up to

6Note that among the φ-independent terms of H′0 are terms, collected in Λ(0), that depend on δt.
These terms, however, only shift the Hamiltonian by a constant value but they do not influence its
shape/structure.
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order δt reduces to a sum of Feynman diagrams containing only a single source and single
vertex term, given by(

D̃δt

)
xy

= Dxy + δt

(
−DxzΛ

(2)
zv Dvy −

1

2
DxzΛ

(4)
zvurDvuDry

)
= + δt

(
+

)
,

Dxy

(
j̃δt
)
y

= Dxy

[
δt

(
− Λ(1)

y −
1

2
Λ(3)
yzvDzv

)]
= δt

(
+

)
.

(2.35)

After restoring the original signal s by replacing the source term, jδt → jδt+D
−1
δt mt, mt ≡

Dtjt [23], this leads in analogy to the previous section to the renormalization flow equations,

dDt,xy

dt
= −DxzΛ

(2)
zv Dvy −

1

2
DxzΛ

(4)
zvurDvuDry,

or alternatively

dD−1
t,xy

dt
= Λ(2)

xy +
1

2
Λ(4)
xuryDt,ur, and

djt,y
dt

= − Λ(1)
y + Λ(2)

yz (Dtjt)z −
1

2
Λ(3)
yzvDt,zv +

1

2
Λ(4)
yzvuDt,zv(Dtjt)u,

(2.36)

with boundaries jt=0 = j0 and D−1
t=0 = D−1. Note that the positive terms in the differential

equation of jt arise from the restoration of the original signal.
Further note that the gained simplicity in the diagrammatic expansion has turned into

a higher complexity of the vertex structure. The explicit structure of these vertices can
be found in App. A.2. These are also implemented for our numerical example, see Sec.
5.2.2 and Fig. 2.1. The effect of the resummation process (involving absolute calibration
measurements, see Sec. 5.2.2) on the information propagator is illustrated by Fig. 2.2.

2.3.1.3. Approach optimization

Until now, the vertex-tensors Λ(n) were pseudo-time independent (see, for instance, Eq.
(A.2)). However, the CURE approach can in principle be improved if we replace the
residual field φ = s −m0 after every timestep by φ̃t = s −mt = s −Dtjt. This way the
support point of the expansion is always chosen optimally so that the first term of Λ(1)

does still vanish (see Eq. (A.2)) and the definition of time derivatives, Eq. (2.31), remains
valid.

2.3.2. Self-calibration schemes

To compare the derived CURE method not only against the Wiener filter solution without
information of calibration (which is the starting value of CURE) but also to two other
iterative self-calibration (selfcal) schemes we review the basic ideas of the latter briefly. A
full description of the following methods can be found in Ref. [23]. The response is still
considered to be linear, Rγ = R0 +

∑
a γaR

a.
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Figure 2.1.: Signal, data, and signal reconstruction (considering unknown calibration) with related
1σ-uncertainty according to Eq. (2.36) for the numerical example described in Sec. 5.2.2. For
comparison to other methods see Fig. 2.3. Calibration and its reconstructions are shown in Fig. 2.4.

2.3.2.1. Classical selfcal

Classical selfcal is an iterative method, alternately inferring the signal while assuming the
calibration to be known and vice versa until a fix-point is reached. The respectively inferred
quantities s? and γ? are often maximum a posterori (MAP) estimators. This procedure of
simultaneously estimating s and γ can be identified with searching for the maximum of the
joint posterior, P(γ, s|d), or equally for the minimum of the joint information Hamiltonian
[23], H(d, γ, s) = − ln[P(d, γ, s)], given by

∂H(d, γ, s)

∂γa

∣∣∣∣
γ=γ?

= 0 and
∂H(d, γ, s)

∂s

∣∣∣∣
s=s?

= 0. (2.37)

The resulting equations (Eq. (2.39) with T = 0) must be iterated until convergence.

2.3.2.2. New selfcal

The new selfcal method is based on the above described idea of classical selfcal. However,
in marked contrast to the latter new selfcal uses the signal marginalized posterior to infer
the calibration, and determines a signal estimate under the usage of the resulting calibra-
tion estimate and its uncertainty afterwards. Therefore, the gradient and Hessian of the
Hamiltonian, H(d, γ) = − ln

∫
Ds P(d, γ, s), have to be calculated to find the MAP esti-
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Figure 2.2.: Explicit structure of propagator operators for the realization shown in Fig.
2.1, 2.3, and 2.4. The figures (a)-(c), (e) refer to the propagators Dmethod with method =
naive (a), CURE (b), cheat (c), and MCMC (e) according to Eq. (2.10) with unknown calibra-
tion set to zero, Eq. (2.36), and Eq. (2.10) with known calibration, respectively. Upper panels
& lower middle panel: The renormalized propagator exhibits the same diagonal structure as the
MCMC propagator. Lower panels (left, right): Comparison of the renormalized propagator to
the MCMC result [CURE - MCMC, (d)] and explicit structures of the propagator diagonals (de-
noted by D̂method, (f)). Emerging from the process of resummation (involving absolute calibration
measurements, see Sec. 5.2.2), Eq. (2.36), the renormalized propagator obtains a non-diagonal
structure due to the complex, non-local vertex structure of the non-Gaussian contributions to the
Hamiltonian, see in particular Eq. (A.2).

mate γ? and its uncertainty ∆, given by

∂H(d, γ)

∂γa

∣∣∣∣
γ=γ?

= 0 and
∂2H(d, γ)

∂γa∂γb

∣∣∣∣
γ=γ?

≡ ∆−1
ab . (2.38)

By following Ref. [23], but skipping here the full derivation, we obtain the resulting cali-
bration formula,
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renormalized estimator

γ? = ∆h,

∆−1
ab = Γ−1

ab + tr
[(
mm† + TD

)
Mab

]
, and

hb = m†jb − tr
[(
mm† + TD

)
Mab

]
, with

T =

 1 for new selfcal

0 for classic selfcal
.

(2.39)

Note that the Wiener filter signal estimate m = m(γ?) and its uncertainty D = D(γ?) still
depend on the calibration and thus ∆ of Eq. (2.39) is not exactly the one of Eq. (2.38)
[23]. For further details, as well as an extensive discussion of the selfcal methods we want
to point to Ref. [23].

2.4. Numerical Example

2.4.1. Setup & results

To demonstrate the efficiency of the derived CURE approach we address the illustrative,
simplistic, one-dimensional example used in Ref. [23] and perform a direct comparison
to the selfcal schemes and MCMC sampling (see, e.g., Ref. [29]). There, a measurement
device with a perfect point-like response scans a signal field s over a (periodic) domain
Ω = {x}x = [0, 1) ⊂ R within a time t ∈ [0, 1) ⊂ R, but with a time dependent calibration
uncertainty, given by the calibration coefficients γt. This instrument exhibits a sampling
rate7 of 1/τ = 80 so that the ith data point, measured at time t = iτ , is related to the signal
at position xt = iτ . During the measurement process spatial and temporal coordinates are
aligned and the data are given by

dt = Rtxsx + nt = (1 + γt)δ(x− xt)sx + nt, (2.40)

where the signal, measurement noise nt, and calibration coefficients γt are Gaussian with
G(s, S), G(n,N), and G(γ,Γ) the corresponding PDF’s with related covariance matrices
S, N , and Γ. These are assumed to be known8 and might be described by their respective
power spectra in Fourier space. Following Ref. [23] we use

Ps(k) =
as

(1 + (k/ks)2)2 ,

Pγ(w) =
aγ

(1 + (w/wγ)2)2 , and

Pn(w) = an.

(2.41)

By Eq. (2.41) the amplitudes as = σ2
sλs, aγ = σ2

γτγ , and an = σ2
nτn with related variances

σ2
s,γ,n and correlation lengths λs = 4/ks, τγ = 4/ωγ , and τn = τ have been introduced.

7Since this work is supposed to be a proof of concept we work with explicit matrices and tensors, whereby
we have to limit the size of the problem for computational reasons. Further investigations are needed on
how to transform this into a method using implicit tensors, and therefore suitable for “big data” problems.

8In case they are unknown there exist well known methods which are able to extract the correlation
structure simultaneously from data, see, e.g., Ref. [25]
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Figure 2.3.: Signal reconstructions and related errors of different approaches. The following
terminology is used: naive: Wiener filter with unknown calibration set to zero; classic: classical
selfcal (Eq. (2.43), T = 0); CURE (Eqs. (2.36) and (A.2)); selfcal: new selfcal (Eq. (2.43), T = 1);
cheat: Wiener filter with known calibration; MCMC: Markov Chain Monte Carlo sampling. The
gray shaded region represents the 1σ uncertainty of the CURE method.
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renormalized estimator

Within the numerical implementation we use the values σs = 1, σγ = 0.3, σn = 0.5,
λs = 0.3 and τγ = 1.5. This means we get an unit variance signal with calibration
uncertainty of 30% and noise of 50%, which is still white (percentage values with respect
to the typical signal strength).
Relating to Ref. [23] we also introduce so-called absolute calibration measurements to

have additional information about the calibration that is beneficial to break the global
degeneracy of the data with respect to signal and calibration variations. This means, we
switch off the signal for four particular times ti ∈ {0, 0.25, 0.5, 0.75}, where the calibration
has the strength c = 4. Here, the data d′ is given by

d′ti = (1 + γti)c+ n′ti . (2.42)

During these measurements we assume the same noise statistics as before, n′ ←↩ G(n′, N).
Including the absolute calibration measurements the iterative selfcal equations, Eq.

(2.39), become [23]

γ? = ∆h,

∆−1
tt′ = Γ−1

tt′ + σ−2
n δtt′

(
qt + c2

∑
i

δtti

)
,

ht = σ−2
n

(
dtmxt − qt + c2

∑
i

δttid
′
i

)
, and

qt = m2
xt + TDxtxt with

T =

 1 for new selfcal

0 for classic selfcal
.

(2.43)

To apply the CURE approach including the absolute calibration measurements we have
to solve the ordinary differential equation of first order, according to Eq. (2.33) or Eq.
(2.36), depending on whether the zero-point or reference field expansion is used. We
present here the more general, but more complex version of the reference field expansion,
Eqs. (2.35) and (A.2), because this version is constructed to deal with a larger uncertainty
of the calibration than the zero-point expansion. To solve Eq. (2.36) we use the ordinary
differential equation solver of scipy9 with integrator settings: vode, method = adams. All
numerical calculations have been performed using NIFTy10 [30].
Figs. 2.3 and 2.4 show a typical result for signal and calibration reconstruction, respec-

tively. Fig. 2.5 and Tabs. 5.1, 2.2, and 2.3 show the squared error averages of the different
calibration methods according to Eq. (2.44) at a given number of realizations11 for signal
and calibration, where the following terminology is used,

∆s
i ≡

〈
(s−mi)

†(s−mi)
〉

(d,s,γ)
,

∆γ
i ≡

〈
(γ − γi)†(γ − γi)

〉
(d,s,γ)

with

i = naive, cheat, classic, selfcal,
CURE, and MCMC,

(2.44)

9http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
10http://www.mpa-garching.mpg.de/ift/nifty
11Note that for the statistics of 500 realizations we use a four times coarser sampling rate.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://www.mpa-garching.mpg.de/ift/nifty
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Figure 2.4.: Calibration reconstructions and related errors of different approaches using Eq. (2.43).
The terminology is used following Fig. 2.3. The gray shaded region represents the 1σ uncertainty
of the CURE method. The reconstruction of cheat is not perfect, because Eq. (2.43) uses the
Wiener filtered data (assuming the correct calibration, but non-neglectable noise). The relatively
good result of naive is a pure coincidence.

referring to the Wiener filter methods without and with information of calibration, the
classic and new selfcal scheme, the CURE scheme, and MCMC sampling, respectively.

2.4.2. Discussion

As Figs. 2.3, 2.4, and in particular Fig. 2.5 with related Tabs. 5.1, 2.2, and 2.3 illus-
trate, the CURE and new selfcal (selfcal) approach prevail against classical selfcal (classic)
and Wiener filtering with unknown calibration (naive) and perform similar to the MCMC
method. The latter represents in principle the best method by avoiding any approxi-
mations, but also the most expensive one. Its small underperformance in comparison to
CURE and selfcal has its origin in using still not sufficient samples for the MCMC-chains12

to converge fully. Increasing their number, however, would increase the numerical effort
significantly.

12For each signal realization we have to run a separate chain. In the numerical example used in this work,
a single chain consists of 2× 103 independent samples.
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Figure 2.5.: Squared error averages according to Eq. (2.44) at a given number of realizations
for signal (upper panel) and calibration (lower panel). The best and worst result for signal and
calibration yields the cheat and naive method, respectively. In the signal domain (upper panel)
all three advanced methods are very close to each other, although there is a slight preference for
the CURE and selfcal method followed by MCMC and classic. The results of the naive method
are beyond the range of the upper panel. For the inference of calibration (lower panel) CURE and
selfcal perform clearly better than classic and very similar to MCMC (see Tab. 5.1, 2.2, and 2.3).



2.4. Numerical Example 35

Table 2.1.: Squared errors of signal and calibration for all methods, averaged over 500 realizations,
see Fig. 2.5.

i ∆s
i ∆γ

i

naive 0.1635 0.1968

cheat 0.1300 0.1316

classic 0.1343 0.1873

selfcal 0.1338 0.1637

CURE 0.1338 0.1635

MCMC 0.1342 0.1638

Table 2.2.: Improvements of the methods’ signal squared errors with respect to the naive method,
averaged over 500 realizations.

i ∆s
naive −∆s

i improvement

naive 0.0000 0.00%

cheat 0.0335 100.00%

classic 0.0292 87.16%

selfcal 0.0297 88.86%

CURE 0.0297 88.66%

MCMC 0.0293 87.46%

The upside of CURE is that it is not iterative since it only involves the solution of a
single system of coupled ordinary differential equations (ODE’s). For ODE’s, in turn, exist
a number of well working numerical solvers with adaptive stepsize control, which might
save significant amounts of computational time13. This is, however, only true if one finds a
clever implementation or sparse representation of Λ(3), because the term Λ

(3)
yzvDzv, required

in Eq. (2.35) might become a bottleneck within a calculation due to its complex correlation
structure (contrary to the Λ(4) term). Another downside is the higher level of complexity
in comparison to new selfcal that naturally arises with a renormalization calculation.

13We want to mention that we also found realizations for certain levels of signal, noise, and calibration
where the scipy solver did not converge. The reason for this might be a initial guess too far away
from the correct solution. In many cases one could cope with this problem by significantly reducing the
stepsize, δt, or using the optimization described in Sec. 2.3.1.3. We, however, did not elaborate on this
since this work is supposed to be a proof of concepts.
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Table 2.3.: Improvements of the methods’ calibration squared errors with respect to the naive
method, averaged over 500 realizations.

i ∆γ
naive −∆γ

i improvement

naive 0.0000 0.00%

cheat 0.0652 100.00%

classic 0.0095 14.57%

selfcal 0.0331 50.77%

CURE 0.0333 51.07%

MCMC 0.0330 50.61%

2.5. Concluding remarks

We derived the calibration uncertainty renormalized estimator (CURE) method to infer
a signal and consequently the calibration without knowledge of the calibration but its
covariance. The basic idea of CURE is to perform a perturbation calculation around
a reference field, an a priori determined reconstruction of the signal without knowledge
of calibration. Perturbatively means that we successively take into account higher-order
terms of calibration uncertainty. This way, the problem of signal reconstruction without
knowledge of the calibration, which is often solved by iterative or brute-force sampling
methods, turns into a single system of ordinary differential equations.
We applied the method to a mock example and compared it against other existent cal-

ibration methods. For this example we found that CURE performs extremely similar to
new selfcal and MCMC sampling, and clearly beats the Wiener filter without calibration
as well as the classic selfcal method in terms of reconstruction accuracy. Although it obvi-
ously performs well, a recommendation to favor this method over new and classical selfcal
depends on the particular problem at hand as well as on the numerical implementation, as
discussed in Sec. 2.4.2. Therefore it serves as an alternative to them.



3. Generic inference of inflation models
by non-Gaussianity and primordial
power spectrum reconstruction

Note: This chapter has been published in JCAP 6, 048 (2014) [31].

3.1. Introduction

3.1.1. Motivation

By precision measurements of the cosmic microwave background (CMB) [32, 33] it has
become possible to determine the exact statistics of its temperature anisotropies. These
anisotropies are strongly connected to the curvature perturbations on uniform density
hypersurfaces ζ, predicted by inflationary models, with the result that the zoo of mod-
els can be constrained by exploiting observational data, e.g., by the usage of Gaussian
statistics [34–38]. The viable models that are compatible with current Planck constraints
on primordial non-Gaussianity, often represented by the fNL parameter, are given by
−3.1 ≤ fNL ≤ 8.5 (68%C.L. statistical) [39] for the local type of non-Gaussianity. In
particular, a value of |fNL| ∝ O(1) is in agreement with the data. Such a low value of
non-Gaussianity opens the possibility to include the effect of primordial non-Gaussianity
when performing routine cosmological parameter estimates in order to maximally exploit
the data, since it permits approximations which prevent the computations from becoming
numerically too expensive. The contributions from higher-order statistics can in many
cases (see Sec. 3.3) be parametrized by the local non-Gaussianity parameter fNL and gNL
[40],

ζ = ζ1 +
3

5
fNLζ

2
1 +

9

25
gNLζ

3
1 +O(ζ4

1 ), (3.1)

where ζ1 is the Gaussian curvature perturbation. fNL contributes to the bi- and trispec-
trum, while gNL contributes only to the trispectrum of the curvature perturbation.
As things turned out, there are inflation models among the ones, which are favored by

current data, e.g., stated in Ref. [37] (AI, BI, ESI, HI, LI, MHI, RGI, SBI, SFI )1 or Ref.
[38], predicting values of |fNL| ∝ O(1) and distinctly deviate from gNL = 0 if the possibility
of non-Gaussianity is taken into account. It is crucial to realize that it is less likely for
(at least) two disjunct inflation models to predict the same combination (fNL, gNL) than
only the same value of fNL or gNL. In other words, if we would be able to infer these
two non-Gaussianity parameters simultaneously from CMB or large scale structure (LSS)
data, we had a powerful tool to distinguish between the remaining inflation models. This
requires to derive a posterior probability density function (pdf) for (fNL, gNL) within a
1Terminology according to Ref. [34]: AI = Arctan Inflation, BI = Brane Inflation, ESI = Exponential
SUSY Inflation, HI = Higgs Inflation, LI = Loop Inflation, MHI = Mutated Hilltop Inflation, RGI =
Radiation Gauge Inflation, SBI = Supergravity Brane Inflation, SFI = Small Field Inflation.

37
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Bayesian framework. How this can be done analytically is presented in the first part of
this paper. Additionally, we show how this method can be recast to infer parameters
specific to inflationary models, e.g., shape parameters of inflationary potentials, or the
presence of an additional bosonic field, directly from data. We also provide a validation of
our approach to show its precision despite using an approximation.
The second quantity of interest here is the primordial power spectrum, Pζ(k) or Pζ1(k),

in particular due to its constraining character with respect to inflationary scenarios. The
Planck collaboration might have seen some features within the primordial power spectrum
which in turn would indicate non-linear physics and thus could point to inflation models
beyond single-field slow-roll inflation [38]. Additionally, these types of deviations are well
motivated by, e.g., implications of the recent BICEP2 data [41–44], or special features
of the inflaton potential [45, 46]. However, for the detection of such features one has to
appropriately reconstruct the power spectrum from observational data. For this purpose
we suggest two non-parametric spectral inference methods in Sec. 3.5.

3.1.2. Previous Bayesian work

The majority of publications [21, 47–52], which are dealing with Bayesian reconstructions
of non-Gaussian quantities from CMB have their focus only on estimators or the pdf of the
fNL or gNL parameter. They usually require computationally expensive calculations like
Monte Carlo sampling except for some, e.g. Refs. [53, 54], which derive analytic expressions
by performing approximations.
High precision CMB measurements of the WMAP and Planck satellites have opened a

new window to the physics of the early Universe and have thus improved the constraints
on some parameters of non-Gaussianity [39] and on many inflation models [38] based on
the two-point function, but have not connected the inflationary parameters directly to
higher-order statistics. A way of direct inference of single-field slow-roll inflation models
from CMB data of the Planck satellite was recently presented by Refs. [35–37]. Here, the
CMB power spectrum was analyzed already ruling out a huge amount of inflation models.
We, however, go beyond Gaussian and three-point statistics to achieve tighter constraints
on reasonable, not necessarily single-field slow-roll inflation models given the Planck and
future data.
An independent cross-check of CMB results is the analysis of the LSS data. Current

results for non-Gaussianity values, e.g. Refs. [55–61] and forwarding references thereof, are
consistent with CMB constraints. Thus, the LSS provides also a natural data set to infer
inflation models. The inference approach presented in this paper is in principle able to
deal with this type of data sets as well (see Sec. 3.4).
According to the reconstruction of the primordial power spectrum, there exist a huge

amount of approaches and an overview of the literature can be found in section 7 of Ref.
[38] and in Ref. [62]. Within this work we exclusively focus on the approach of Refs. [25]
and [63], which developed approximative, but inexpensive Bayesian inference schemes for
spectra within the framework of information field theory.
For a brief review on inferring primordial non-Gaussianities in the CMB beyond Bayesian

techniques (e.g., bi- and trispectrum estimators, Minkowski Functionals, wavelets, needlets,
etc.) we want to point to Ref. [64] and forwarding references thereof.
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3.1.3. Structure of the work

The remainder of this work is organized as follows. In Sec. 3.2 we describe the considered
data model and introduce the generic method of inferring inflation models postulating fNL,
gNL. In Sec. 3.3 we review a few inflation models that are not ruled out by current Planck
data and quote corresponding expressions for fNL and gNL. Additionally, we show where
the specific models are localized in the fNL-gNL-plane. The Bayesian posterior for special
inflationary parameters is shown in Sec. 3.4 as well as a numerical implementation (toy
case) of the also pedagogically important curvaton scenario in the Sachs-Wolfe limit and
its validation by the Diagnostics of Insufficiencies of Posterior distribution (DIP) test [65].
In Sec. 3.5 we introduce a method to reconstruct the primordial power spectrum of ζ and
ζ1. We summarize our findings in Sec. 3.6.
Being at the interface of statistical analysis and physical cosmology, it seems appropriate

to guide the reader by giving some reading instructions. For a reader who is rather inter-
ested in the statistical analysis, i.e. how to infer (inflationary) parameters from CMB data
and how to reconstruct a power spectrum in a non-parametric way in general, paragraphs
starting with symbol I and ending with symbol J might be skipped. For a reader rather
interested in physical cosmology these symbols might mark paragraphs of special interest.

3.2. Generic inference of inflation models postulating fNL, gNL

In order to decide which inflation model is favored by current CMB or LSS data one
should use as much information as possible during the inference process without becoming
numerically too expensive. This implies, in particular, to aim for information sensitive
to non-Gaussian statistics. Usually, this leads to non-trivial phase space integrals which
cannot be performed analytically and require numerically expensive techniques like Monte
Carlo sampling. Within this section, however, we show how to set up a fully analytic
posterior for the scalar, local non-Gaussianity parameters fNL(p) and gNL(p), which in
general depend on inflation or reheating model specific parameters, p = (p1, . . . , pu)T ∈
Ru, u ∈ N. In turn, this also enables to calculate analytically the posterior pdf for the
model specific parameters p, which encode, e.g., the particular shape of an inflation model
or the density fraction of an additional bosonic field (see Sec. 3.3). To keep this analyticity
and simultaneously avoid numerically expensive sampling techniques we introduce a saddle-
point approximation in the actual section, whose sufficiency is validated in Sec. 3.4.2.3.
For reasons of clarity and comprehensibility we drop the p-dependency in our nota-

tion within this section. For the same reason we focus on global values of fNL and gNL
although the formalism described below is generic and can deal with spatially varying
non-Gaussianity parameters as shown in Ref. [21].

3.2.1. Data model

To infer physical quantities from data we have to agree on a particular data model. Fol-
lowing the logic of information field theory [21], a CMB observation is represented by a
discrete data tuple d = (d1, . . . , dm)T ∈ Rm, m ∈ N, composed of uncorrelated Gaussian
noise n = (n1, . . . , nm)T ∈ Rm and a linear response operation R acting on the, in general,
non-Gaussian comoving curvature perturbations ζ, a continuous physical field over the



40
Chapter 3. Generic inference of inflation models by non-Gaussianity and primordial

power spectrum reconstruction

Riemannian manifold U ,

d =
δT

TCMB
= Rζ + n = R

(
ζ1 +

3

5
fNLζ

2
1 +

9

25
gNLζ

3
1 +O

(
ζ4

1

))
+ n, (3.2)

with the Gaussian curvature perturbations ζ1. The pdfs of ζ1 and n are given by P (ζ1) =

G(ζ1,Ξ) with covariance Ξ =
〈
ζ1ζ
†
1

〉
(ζ1|Ξ)

, and P (n) = G(n,N) with covariance N , respec-

tively. Here, we use the notation

〈 . 〉P (a) = 〈 . 〉(a|A) ≡
∫
Da . P (a|A), (3.3)

and

G(a,A) ≡ |2πA|−1/2 exp

(
−1

2
a†A−1a

)
, (3.4)

where † denotes a transposition and complex conjugation, ∗, and a†b ≡
∫
U d

dx a∗(x)b(x)
with d ≡ dimU defining the inner product on the fields a, b. The comoving curvature
perturbation ζ on uniform density hypersurfaces, which is a conserved quantity outside the
horizon2 [68], is the seed of the structure growth during the evolution of the Universe and
its statistics are precisely predicted by inflation models. Therefore, ζ is directly related to
inflationary parameters, p. If the statistics of ζ, predicted by inflation scenarios, are non-
Gaussian, the dependence on p can often be absorbed in the non-Gaussianity parameters
fNL(p) and gNL(p). The linear response R in Eq. (3.2) transfers the curvature perturbations
into temperature deviations, δT , and contains all instrumental and measurement effects,
i.e. R represents the radiation transfer function. In this way the data is directly related to
the initial Gaussian curvature perturbation ζ1 or to inflationary parameters p and we can
set up the inference scheme.

3.2.2. Posterior derivation

We derive the posterior by following Ref. [53], i.e. we first calculate the pdf for the Gaus-
sian curvature perturbation ζ1 given the non-Gaussianity parameters and data via Bayes
theorem [26],

P (ζ1|d, fNL, gNL) =
P (ζ1, d, fNL, gNL)

P (d, fNL, gNL)

=
P (d|ζ1, fNL, gNL)P (ζ1|fNL, gNL)

P (d|fNL, gNL)
≡ 1

Z
e−H(ζ1,d|fNL,gNL),

(3.5)

where H(ζ1, d|fNL, gNL) ≡ − ln[P (d|ζ1, fNL, gNL)P (ζ1|fNL, gNL)] defines the information
Hamiltonian and Z ≡ P (d|fNL, gNL) the partition function. Assuming Gaussian noise,
G(n,N), with N =

〈
nn†

〉
(n|N)

denoting the noise covariance matrix and that fNL and gNL
are constant scalars and that all quantities are real, the information Hamiltonian is given

2Note that this is true in the standard ΛCDM model. However, if there are sources of anisotropic stress
before neutrino decoupling, such as, e.g., in the case of primordial magnetic fields, then ζ is no longer a
constant on superhorizon scales [66, 67].
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by

H(ζ1, d|fNL, gNL) = − ln [P (d|ζ1, fNL, gNL)P (ζ1|fNL, gNL)]

= − ln [G (d−Rζ,N)G (ζ1,Ξ)]

= H0 +
1

2
ζ†1D

−1ζ1 − j†ζ1 −
3

5
fNLj

†ζ2
1 −

9

25
gNLj

†ζ3
1 +

3

5
fNLζ

†
1Mζ2

1

+
9

25
gNLζ

†
1Mζ3

1 +
9

50
f2
NL

(
ζ†1

)2
Mζ2

1 +
27

125
fNLgNL

(
ζ†1

)2
Mζ3

1

+
81

1250
g2
NL

(
ζ†1

)3
Mζ3

1 .

(3.6)

Note that some terms of order O(ζ5
1 ) have already been neglected because we did not state

the exact expression for the term proportional to O(ζ4
1 ) in Eq. (3.2). Eq. (3.6) contains

the abbreviations

D−1 = Ξ−1 +M, M = R†N−1R, j = R†N−1d,

and H0 =
1

2
ln |2πΞ|+ 1

2
ln |2πN |+ 1

2
d†N−1d.

(3.7)

Now, we are able to determine the posterior for the non-Gaussianity parameters fNL
and gNL, which can be calculated by combining Eqs. (3.5) and (3.6),

P (fNL, gNL|d) =
P (d|fNL, gNL)P (fNL, gNL)

P (d)
∝ P (fNL, gNL)

∫
Dζ1P (ζ1, d|fNL, gNL)

= P (fNL, gNL)

∫
Dζ1 exp [−H(ζ1, d|fNL, gNL)] .

(3.8)

Due to the fact that the Hamiltonian contains higher orders than ζ2
1 we cannot perform

the path-integration analytically. To circumvent this obstacle we conduct a saddle-point
approximation in ζ1 around ζ̄1 ≡ arg min [H(ζ1, d|fNL, gNL)] up to the second order in ζ1

to be still able to perform the path-integration analytically, cf. [53]. This Taylor approxi-
mation is justified by |ζ1| ∝ O

(
10−5

)
. For the expansion of the Hamiltonian we need the

first and second derivative with respect to ζ1, given by

0 =
δH(ζ1, d|fNL, gNL)

δζ1

∣∣∣∣
ζ1=ζ̄1

=

(
D−1 − 6

5
fNL ĵ

)
ζ̄1 − j −

27

25
gNLĵζ̄1

2
+

3

5
fNL

(
Mζ̄1

2
+ 2ζ̄1 ? Mζ̄1

)
+

9

25
gNL

(
Mζ̄1

3
+ 3ζ̄1

2
? Mζ̄1

)
+

(
18

25
f2
NLζ̄1 ? Mζ̄1

2
)

+
27

125
fNLgNL

(
2ζ̄1 ? Mζ̄1

3
+ 3ζ̄1

2
? Mζ̄1

2
)

+

(
243

625
g2
NLζ̄1

2
? Mζ̄1

3
)
,

(3.9)

and
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D−1
d,fNL,gNL

≡ δ2H(ζ1, d|fNL, gNL)

δζ2
1

∣∣∣∣
ζ1=ζ̄1

= D−1 − 6

5
fNLĵ −

54

25
gNL

̂̄ζ1 ? j +
6

5
fNL

(
2ζ̄1 ? M + M̂ ζ̄1

)
+

27

25
gNL

(
M̂ ζ̄1

2
+
(
ζ̄1

2
? M + 2 ̂̄ζ1M̂ ζ̄1

))
+

18

25
f2
NL

(
M̂ ζ̄1

2
+ 2ζ̄1 ? M ? ζ̄1

)
+

54

125
fNLgNL

(
3 ̂̄ζ1M̂ ζ̄1

2
+ M̂ ζ̄1

3
+ 6ζ̄1 ? M ? ζ̄1

2
)

+
243

625
g2
NL

(
2 ̂̄ζ1M̂ ζ̄1

3
+ 3ζ̄1

2
? M ? ζ̄1

2
)
,

(3.10)

where ? denotes a pixel-by-pixel multiplication, e.g., ζ2
x = (ζ ? ζ)x ≡ ζxζx and a hat over

fields denotes the transformation of a field to a diagonal matrix, ζx 7→ ζxδxy ≡ ζ̂xy.
With Eqs. (3.9) and (3.10) we are able to perform the saddle-point approximation of the

posterior yielding

P (fNL, gNL|d) ∝ P (fNL, gNL)

∫
Dζ1 exp [−H(d, ζ1|fNL, gNL)]

≈ P (fNL, gNL)

∫
D(ζ1 − ζ̄1)

∣∣∣∣δ(ζ1 − ζ̄1)

δζ1

∣∣∣∣−1

× exp

[
−H(d, ζ̄1|fNL, gNL)− 1

2
(ζ1 − ζ̄1)†D−1

d,fNL,gNL
(ζ1 − ζ̄1)

]
= |2πDd,fNL,gNL |

1
2 exp

[
−H(d, ζ̄1|fNL, gNL)

]
P (fNL, gNL).

(3.11)

Considering Eq. (3.11), we are able to calculate analytically the full posterior pdf of the
fNL and gNL parameter without using expensive Monte Carlo sampling techniques. These
techniques have been avoided by replacing the joint pdf for data and curvature perturba-
tion, P (ζ1, d|fNL, gNL), by the Gaussian distribution G(ζ1− ζ̄1, Dd,fNL,gNL), whose precision
is validated for particular inflation models in Sec. 3.4 as well as in Ref. [53] by applying
the DIP test [65].
Note that the evaluation of Eq. (3.11) requires a priori knowledge about the primor-

dial power spectrum, Ξ (see Sec. 3.5 for a more detailed description). In the realistic
case of small non-Gaussianity one might try, for instance, to see what consequences the
power-law power spectrum of the Planck cosmology [38] yields, Eq. (3.48), as long as
Ξ =

〈
ζ1ζ
†
1

〉
(ζ1|Ξ)

≈
〈
ζζ†
〉

(ζ|Ξ)
holds. In regimes of larger non-Gaussianity, where the last

approximation is violated, the primordial power spectrum and the reconstruction of ζ1

(wherefore we need a priori Ξ) have to be inferred simultaneously from the data. For this
purpose we introduce an Empirical Bayes method in Sec. 3.5.

3.3. Special models of inflation

I There is a large number of different inflationary models, so what particular type should
one focus on? Fortunately, recently published papers given by Refs. [38] and [37] address
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this question. The first by mainly pointing out parameter constraints to many represen-
tative inflation models as well as a Bayesian model comparison thereof, the second by
suggesting to concentrate on nine specific types of single-field slow-roll inflation, which are
favored by current Planck data. To be more precise, the favors of Ref. [37] have been
determined by calculating the Bayesian evidence and complexity of the models.

The remaining nine models are all single-field slow-roll models and thus are characterized
by, e.g., two slow-roll parameters3, ε and η, which are given by

ε ≡ 1

2

(
MPlVφ
V

)2

and η ≡
M2

PlVφφ
V

, (3.12)

where V ≡ V (φ) denotes the potential of the inflaton φ, MPl the Planck mass, subscript
letters represent derivatives, and ε and η fulfill the bounds ε, |η| � 1. For these specific
models the non-Gaussianity parameters are usually much smaller than one and can often
be written as a function of ε and η, e.g., for single-field slow-roll inflation models with
standard kinetic term and Bunch-Davis vacuum as initial vacuum state the parameter fNL
is proportional to O(ε, η) (for details see [39, 69, 70]). In particular, the quantitative de-
pendence of the non-Gaussianity parameters on inflationary parameters p can be worked
out for every inflation model by conducting cosmological perturbation theory [71, 72] to
desired order or by applying the so-called δN -formalism [68, 73–75]. This means, by re-
placing the non-Gaussianity parameters by (ε, η)-dependent functions, which again depend
on inflation model specific parameters p as clarified in Eq. (3.12), we are able to infer the
slow-roll parameters as well as p directly from data according to Eq. (3.11). Unfortunately,
such a tiny amount of non-Gaussianity is currently expected not to be observable due to
other general relativistic effects (for details see [39]).

The other case of inflation models with Lagrangians including non-standard kinetic terms
leads to non-Gaussianity of equilateral type depending on the so-called sound speed of the
inflaton, cs (= 1 for standard kinetic terms) [38]. This type of non-Gaussianity can approx-
imately be described by the parameter f eqNL ∝ (1− c−2

s ). The sound speed of the inflaton,
again, depends on the particular inflation model and its parameters. Unfortunately, this
type of non-Gaussianity cannot be expressed in a form similar to Eq. (3.1) and one has to
go back, for instance, to templates.

There are also multi-field inflation models that are not ruled out yet [38]. In particular
models where initially isocurvature perturbations are (not necessarily completely) trans-
formed to adiabatic perturbations. Such a transformation requires at least two fields, e.g.,
as it happens in the curvaton, axion, higgs inflation scenario, and indeed a slight favor to
a non-vanishing amount of isocurvature modes might have been seen by Planck [38]. In
this section we focus on such scenarios and review the calculations of the non-Gaussianity
parameters for a selection of realistic models without claiming that this selection is the
most favored one. We are picking only one representative single-parameter mechanism per
inflation model for minimal complexity and simplicity. Note, that the approach of Sec. 3.2
would also allow to focus on the other inflation scenarios mentioned above. We choose the
following scenarios for illustration only. J

3Analogously one can use the HFF slow-roll parameter definition as done in Ref. [37].
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3.3.1. Simplest curvaton model

I Here, the simplest curvaton model, taking into account radiation and the curvaton, is
considered. Without interactions perfect fluids have conserved curvature perturbations
[40, 76],

ζi = δN +
1

3

∫ ρi

ρ̄i

dρ̃i
ρ̃i + Pi(ρ̃i)

, i ∈ {r, χ}, (3.13)

with r denoting radiation, χ the curvaton, δN the perturbation of the number of e-folds
N during inflation, ρ the particle specific density, and P the respective pressure. Barred
quantities refer to homogeneous background values. Assuming the curvaton decays on a
uniform total density hypersurface determined by H = Γ, where H = ȧ

a is the Hubble
parameter, a the cosmological scale factor, and Γ the decay rate of the curvaton (assumed
to be constant). Then on this hypersurface

ρr(tdecay, ~x) + ρχ(tdecay, ~x) = ρ̄(tdecay). (3.14)

However, the local curvaton and radiation densities on this decay surface will be inhomo-
geneous, with ζ = δN ,

ζr = ζ +
1

4
ln

(
ρr
ρ̄r

)
⇒ ρr = ρ̄r e

4(ζr−ζ), (3.15)

ζχ = ζ +
1

3
ln

(
ρχ
ρ̄χ

)
⇒ ρχ = ρ̄χ e

3(ζχ−ζ). (3.16)

Here it was used that once the curvaton starts oscillating it effectively behaves as a non-
relativistic perfect fluid, ρχ ∝ a−3. Using Eqs. (3.15) and (3.16) in Eq. (3.14) leads to
[40]

Ωχ,decay e
3(ζχ−ζ) + (1− Ωχ,decay) e4(ζr−ζ) = 1, (3.17)

where

Ωχ,decay ≡
ρ̄χ

ρ̄χ + ρ̄r
. (3.18)

This equation will now be expanded order by order in ζ. Following Ref. [40] the simplest
case is considered in which any perturbation in the radiation fluid is neglected, due to, say
an inflationary curvature perturbation. Hence ζr = 0.
To first order Eq. (3.17) reads [40]

4 (1− Ωχ,decay) ζ1 = 3 Ωχ,decay (ζχ1 − ζ1) , (3.19)

where subscript 1 denotes the first order expansion so that

ζ1 = rζχ1 , (3.20)

where

r ≡
3Ωχ,decay

4− Ωχ,decay
=

3ρ̄χ
3ρ̄χ + 4ρ̄r

∣∣∣∣
tdecay

∈ [0, 1]. (3.21)
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For r ≈ 1, i.e. the curvaton is highly dominant, the curvature perturbations are purely
adiabatic whereas for r � 1 not all isocurvature modes have converted to adiabatic ones.
Assuming that the curvaton energy density is determined by a simple quadratic potential,

ρχ =
1

2
m2χ2, (3.22)

and assuming it is a weakly coupled field during inflation so that its quantum fluctuations
induce a classical Gaussian random field after horizon exit on superhorizon scales, then

χ∗ = χ̄∗ + δ1χ∗, (3.23)

where the * indicates the time of horizon exit and 1 in the perturbation emphasizes the
linear perturbation. Moreover, δ1χ∗ is a Gaussian random field with 2-point correlation
function in k-space,

〈δ1χ∗,~k δ1χ
†
∗,~k′
〉 =

2π2

k3

(
H

2π

)2

δ~k~k′ , (3.24)

where H ' const. during inflation. Now there could be a nonlinear evolution of χ on
superhorizon scales after horizon exit up to the beginning of the curvaton oscillations and
subsequent decay during the radiation dominated era. In Ref. [40] this is taken into account
by introducing a function g(χ) such that during the curvaton oscillations the value of the
curvaton field is given by

χ = g(χ∗). (3.25)

Hence ρ̄χ = 1
2m

2ḡ2 and [40]

ζχ1 =
2

3

δ1χ

χ̄
=

2

3

g′

g

∣∣∣∣
χ=χ∗

δ1χ∗. (3.26)

In real space the nonlinearity parameters fNL and gNL are defined by (e.g. [40])

ζ(t, ~x) = ζ1(t, ~x) +
3

5
fNLζ1(t, ~x)2 +

9

25
gNLζ1(t, ~x)3 +O(ζ4

1 ). (3.27)

The Bardeen potential Φmd on large scales in the matter dominated era is related to ζ1 by
Φmd = 3

5ζ1 so that

3

5
ζ = Φmd + fNLΦ2

md + gNLΦ3
md. (3.28)

In Ref. [40] fNL and gNL are calculated by expanding Eq. (3.19) respectively up to second
and third order, e.g.,

fNL =
5

4r

(
1 +

gg′′

g′2

)
− 5

3
− 5r

6
, (3.29)

and gNL can be found in Ref. [40].
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Now considering the simplest model and neglecting any nonlinear evolution of χ between
Hubble exit and the start of curvaton oscillations, so that g′′ = 0 = g′′′. In this case we
obtain

fNL =
5

4
κ− 5

3
− 5

6κ
,

gNL =
25

54

(
−9κ+

1

2
+

10

κ
+

3

κ2

)
,

(3.30)

with
κ ≡ 1

r
=

4ρ̄r
3ρ̄χ

+ 1 ∈ [1,∞), (3.31)

where the parameter κ was introduced for reasons that become clear in Sec. 3.5. Eq. (3.30)
is illustrated in Fig. 3.1. Currently, an upper bound on the isocurvature contribution was
given by the Planck collaboration corresponding to fNL = −1.23 ± 0.02. Note that this
constraining interval for fNL was found by a power spectrum fit including adiabatic and
isocurvature modes [38] and thus is independent of the limit (fNL = 2.7 ± 5.8) found in
Ref. [39] and is only valid for the here considered curvaton scenario. On the other hand
this corresponds to the interval gNL = 1.97± 0.11. A gNL outside this interval would put
some pressure on this simplest curvaton model. J

3.3.2. Modulated Higgs inflation

I Next, we consider the Standard Model Higgs field h in addition4 to the inflaton field φ
with related potential V (φ) as pointed out in Ref. [77] and as representative mechanism of
the Higgs inflation (HI) class. The Higgs field is responsible for modulating the efficiency of
reheating, whereby primordial curvature perturbations are generated by converting isocur-
vature perturbations (produced by h during inflation) to adiabatic ones [79]. In particular
we assume a simple Higgs potential during the energy scale of inflation µ,

V (h) =
λ

4
h4, (3.32)

with λ ≡ λ(µ) ≈ O(10−2) the Higgs self coupling with logarithmic dependence on the
energy scale.
Within this model we can write the total decay rate of the inflaton, Γ(h), as a sum of a

Higgs dependent and independent term,

Γ(h) = ΓI + ΓD(h). (3.33)

Then the curvature perturbation is given by [77, 80]

ζ =
1

M2
Pl

V (φ)

Vφ(φ)
δφ∗ +Qhδh∗ +

1

2
Qhhδh

2
∗ +

1

6
Qhhhδh

3
∗ +O(δh4

∗), (3.34)

with Q ≈ a0 log
(

Γ
Hc

)
. ∗ denotes the horizon exit, Hc is the Hubble constant at tc (a

time before the decay of the inflaton, for details cf. [77]), and subscript letters represent
derivatives. a0 is a model dependent constant of the order of O(10−1).
4It is well known that the Standard Model Higgs field cannot serve as an inflaton field [77, 78].
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Figure 3.1.: Simplest curvaton model: Possible values of fNL and gNL within current Planck
constraints parametrized by the curvaton parameter κ = 4ρ̄r/(3ρ̄χ) + 1. The current constraints
on isocurvature modes (red squares) narrow down the allowed region significantly.

Assuming the Higgs dependent decay rate to be of polynomial form in h, ΓD(h) ∝ hn,
the non-Gaussianity parameters can be calculated from the statistics of ζ, which yields [77]

fNL =− 5

6

β2

a0

(
1− ΓΓhh

Γ2
h

)
≈ −5

6

β2

a0

(
1− 1

Bh

n− 1

n

)
,

gNL =− 25β3

54a2
0

(
2− 3

ΓΓhh
Γ2
h

+
Γ2Γhhh

Γ3
h

)
≈ 2(n− 2)

3(n− 1)β
f2
NL −

5

3

β

a0
fNL,

(3.35)

with Bh = ΓD/Γ ≤ O(10−3 − 10−2) and β ≈ O(10−2 − 1). Eq. (3.35) is illustrated
in Fig. 3.2. J
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Figure 3.2.: Modulated Higgs inflation: Possible values of fNL and gNL for some model-typical
values of a0 = 0.1, β = 0.5, and Bh = 0.01 within the Planck constraints parametrized by the
decay rate index n from ΓD(h) ∝ hn.

3.4. Posterior for special inflationary parameters

3.4.1. Generic procedure

For all models discussed in Sec. 3.3 an expression for the posterior of a model specific
quantity can be derived by replacing fNL and gNL by their corresponding model dependent
parameters p, which are pointed out in the stated section. This is, of course, also true for
all other inflation models postulating these two non-Gaussianity parameters. Thereby one

obtains p-dependent equations for δH(ζ1,d|p)
δζ1

∣∣∣∣
ζ1=ζ̄1

= 0 and D−1
d,p ≡

δ2H(ζ1,d|p)
δζ2

1

∣∣∣∣
ζ1=ζ̄1

, which

allow to derive the posterior analytically, Eq. (3.11).
Eventually, the response R has to be replaced by its respective, corresponding expression,

depending on whether one uses the CMB data, LSS data, or something else. The resulting
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posterior can then be implemented and evaluated numerically. With its help one might
obtain a single point (e.g. mean of p or maximum of the posterior) within the fNL(p) −
gNL(p)−plane with corresponding error interval being a sub-area of the plane or it just
maps out the parameter posterior.

3.4.2. Simplest curvaton model

3.4.2.1. Posterior derivation

To demonstrate the applicability of the inference approach we study the simplest curvaton
inflation scenario. We follow Secs. 3.2 and 3.4.1 to derive the posterior. The replacement
of fNL and gNL by their corresponding κ expressions leads to the information Hamiltonian,

H(ζ1, d|κ) = H0 +
1

2
ζ†1D

−1ζ1 − j†ζ1

−
(

3

4
κ− 1− 1

2κ

)
j†ζ2

1 −
(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)
j†ζ3

1

+

(
3

4
κ− 1− 1

2κ

)
ζ†1Mζ2

1 +

(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)
ζ†1Mζ3

1

+
1

2

(
3

4
κ− 1− 1

2κ

)2 (
ζ2

1

)†
Mζ2

1 +

(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)
×
(

3

4
κ− 1− 1

2κ

)(
ζ2

1

)†
Mζ3

1 +
1

2

(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)2 (
ζ3

1

)†
Mζ3

1 .

(3.36)

Analogously, by replacing fNL and gNL by their corresponding κ expressions in Eqs. (3.9)

and (3.10), one obtains expressions for δH(ζ1,d|κ)
δζ1

∣∣∣∣
ζ1=ζ̄1

= 0 and D−1
d,κ ≡

δ2H(ζ1,d|κ)
δζ2

1

∣∣∣∣
ζ1=ζ̄1

,

whereby we are able to perform the saddle-point approximation of the posterior, which
yields (see Eq. (3.11))

P (κ|d) ∝ P (κ)

∫
Dζ1 exp [−H(d, ζ1|κ)] ≈ |2πDd,κ|

1
2 exp

[
−H(d, ζ̄1|κ)

]
P (κ). (3.37)

For numerical reasons D−1
d,κ is split into a diagonal part, D−1

d,κ,diag, and a non-diagonal one,
D−1
d,κ,non-diag, which leads to (cf. [53])

ln [P (κ|d)] = −H(κ|d)

≈ − 1

2
tr
[
ln

(
1

2π
D−1
d,κ,diag

)]
+

1

2
tr

[ ∞∑
n=1

(−1)n

n

(
Dd,κ,diagD

−1
d,κ,non-diag

)n]
−H(d, ζ̄1|κ) + ln [P (κ)] + const..

(3.38)

The series expansion of the logarithm in Eq. (3.38) can be truncated if the terms become
sufficiently small.
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3.4.2.2. Numerical implementation

For a numerical implementation of Eq. (3.38) we have to choose a prior pdf for κ, P (κ).
A naive choice, for instance, according to Eq. (3.31) would be

P (κ) =
1

κ0 − 1
Θ(κ− 1)Θ(κ0 − κ), (3.39)

with Θ the Heaviside step function and κ0 a large but finite number to normalize the
distribution. However, at this point we do not want to open a discussion of how to choose
an appropriate prior pdf for the curvaton parameter. Thus we focus on the likelihood pdf,
P (d|κ) ∝ P (κ|d)

P (κ) , given by subtracting ln [P (κ)] from Eq. (3.38).
In order to implement the likelihood we study the inference from CMB data in the

Sachs-Wolfe limit [81] within a toy example in two and three dimensions. Here the data
are given by

d = Rζ + n = RCMBΦmd + n = RCMB
3

5
ζ + n

= RCMB
3

5

(
ζ1 +

3

5
fNLζ

2
1 +

9

25
gNLζ

3
1 +O(ζ4

1 )

)
+ n,

(3.40)

with Φmd the Bardeen potential in the matter dominated era. In this limit the response
becomes local5 [82],

R(x, y) = −3

5

1

3
δ(x− y), (3.41)

with x, y two positions on the two-(three-) dimensional sky. Additionally, we assume white
noise, Nxy = σ2

nδxy. For the inference process the so-called free information propagator D
is required, which depends in particular on the power spectrum of ζ1. For this we assume

Ξ =
〈
ζ1ζ
†
1

〉
(ζ1|Ξ)

≡ Pζ1(k)δkk′ = As

(
k

k∗

)ns−1

δkk′ , (3.42)

which is diagonal in Fourier space with related modes k, k′. This power spectrum is
parametrized by the scalar amplitude As, the spectral index ns, and the pivot scale k∗. A
detailed discussion about this power spectrum and its parameters can be found in Sec. 3.5
and Ref. [38].
The numerical implementation is done in NIFTy [30], where possible calculations of

traces of operators are determined by operator probing. The NIFTy package uses implicit
operators and therefore avoids to store matrices explicitely. Thus, highly resolved data
sets like the CMB map of the Planck satellite should be treatable in principle. However,
to show the efficiency of the derived inference method we use a data set in two (three) flat
dimensions with best fit parameters (for scalar amplitude and spectral index from Planck
[38]) As = 2.2× 10−9, ns = 0.9603, k∗ = 1, Npix = 10000 (10648), and σ2

n = 10−14, where
ζ1 and n are sampled from Ξ and N , respectively.
An implementation of the likelihood (posterior6 with constant prior) in two (three)

dimensions with a true underlying value of κgen = 5 (κgen = 19.8) is shown in Fig. 3.3. The
numerical result coincides [perfectly, (a)] with a Gaussian fit and would deviate from this
shape only for unrealistically high values of κ. A slight deviation from Gaussianity, however,
5The treatment of non-local responses was shown in [53] for a similar case.
6For a prior choice according to Eq. (3.39), Fig. 3.3 shows the posterior of κ.
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Figure 3.3.: Normalized likelihood distributions for κ in a two-(three-)dimensional test case with
data generated from κgen = 5 [(a), (b)] (κgen = 19.8 [(c), (d)]).

can even be observed in the three-dimensional realization with κ = 19.8 (likelihood is
negatively skewed) [21, 47–52]. As we will show in Sec. 3.5.3, even this slight deviation
(and even smaller ones) can affect the reconstruction of the primordial power spectrum,
Pζ(k), significantly. Note, however, that this statement is only true for the likelihood of κ
and has to be taken into account case by case. Significant non-Gaussianity in the likelihood
and posterior pdf might be induced by the p dependent determinant of Eq. (3.11) or by a
specific prior choice. A brief discussion about the comparison of a skewed posterior of p
can be found in App. B.1.

3.4.2.3. Posterior validation

To validate the implementation of Eq. (3.38) we consider the two-dimensional test case
of Sec. 3.4.2.2 and apply the DIP test [65] by following Refs. [53, 83], i.e. conducting the
following steps:

1. Sample uniformly a value of κgen from an interval I = [κini, κfin], i.e. from a prior7

7Note that for validating both, the sufficiency of numerical implementation of the posterior distribution
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P (κ) =

 1
κfin−κini if κ ∈ I

0 else
. (3.43)

2. Generate data d for κgen according to Eq. (3.2).

3. Calculate a posterior curve for given data by determining P (κ|d) for κ ∈ I according
to Eq. (3.38).

4. Calculate the posterior probability for κ ≤ κgen according to

x ≡
∫ κgen

κini

dκ P (κ|d) ∈ [0, 1] . (3.44)

5. If the calculation of the posterior was correct, the distribution for x, P (x), should be
uniform between 0 and 1.

The result of this posterior validation test is shown by Fig. 3.4. Here, the histogram
represents the distribution of 500 x-values within eight bins. The uniformity of the distri-
bution verifies the numeric and analytic (due to the saddle-point approximation) sufficiency
of the posterior. In particular, this means that the shape of the posterior (and therefore the
error-bars around the posterior mean) are calculated correctly. Otherwise the histogram
of the DIP test would have exhibited a characteristic deviation from uniformity, e.g., a dip
in the case of an underestimation of the variance.
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Figure 3.4.: DIP distribution of calculated x values for the two-dimensional test case. The
histogram shows the unnormalized distribution of 500 x values within eight bins. The standard
deviation interval (1σ, blue solid line) around the expectation value (red dashed line) as calculated
from Poissonian statistics is also shown.

and analytic approximations including its derivation, it is not necessary to choose a physical prior. Thus
this kind of prior with appropriate values κini, fin has been chosen for simplicity only. Here, appropriate
means that the interval I is sufficiently large to take care of the shape of the posterior.
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3.4.3. Modulated Higgs inflation

Next, we consider the scenario of modulated Higgs inflation discussed in Sec. 3.3.2. By
following again Secs. 3.2 and 3.4.1, i.e. by replacing fNL and gNL by their corresponding n
dependent expressions8, we obtain

H(ζ1, d|fNL(n)) = − ln [P (d|ζ1, fNL(n))P (ζ1|fNL(n))] = − ln [G (d−Rζ,N)G(ζ1,Ξ)]

= H0 +
1

2
ζ†1D

−1ζ1 − j†ζ1 −
3

5
fNLj

†ζ2
1

−
(

6(n− 2)

25(n− 1)β
f2
NL −

3

5

β

a0
fNL

)
j†ζ3

1 +
3

5
fNLζ

†
1Mζ2

1

+

(
6(n− 2)

25(n− 1)β
f2
NL −

3

5

β

a0
fNL

)
ζ†1Mζ3

1 +
9

50
f2
NL

(
ζ†1

)2
Mζ2

1

+

(
18(n− 2)

125(n− 1)β
f3
NL −

81

625

β

a0
f2
NL

)(
ζ†1

)2
Mζ3

1

+

(
27(n− 2)

625(n− 1)β
f2
NL −

27

250

β

a0
fNL

)2 (
ζ†1

)3
Mζ3

1 ,

(3.45)

with fNL(n) given by

fNL(n) ≈ −5

6

β2

a0

(
1− 1

Bh

n− 1

n

)
. (3.46)

In Eq. (3.45) we dropped the explicit dependency of fNL on n in our notation for reasons
of clarity. To derive the posterior pdf for the n parameter of the Higgs inflation model, we
again conduct the saddle-point approximation introduced in Sec. 3.2. This yields

ln[P (n|d)] = −H(n|d)

≈ − 1

2
tr
[
ln

(
1

2π
D−1
d,n,diag

)]
+

1

2
tr

[ ∞∑
m=1

(−1)m

m

(
Dd,n,diagD

−1
d,n,non-diag

)m]
−H(d, ζ̄1|n) + ln[P (n)] + const.,

(3.47)

where ζ̄1 and Dd,n are defined in Eqs. (3.9) and (3.10) and the labels diag and non-diag
refer to the diagonal and non-diagonal part of D−1

d,n. As before, the series expansion of the
logarithm can be truncated if the terms become sufficiently small.

The numerical implementation of Eq. (3.47) and its validation is completely analogous
to the one of the curvaton scenario. Therefore we do not present it here.

8As a reminder: the model is parametrized by the decay rate index n, ΓD(h) ∝ hn (see Sec. 3.3.2 for
details).
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3.5. Primordial power spectrum reconstruction

3.5.1. Motivation

I An essential quantity that allows to discriminate between inflationary scenarios is the
primordial power spectrum. It is commonly parametrized by [38]

ln [PR(k)] = ln(As) +

(
ns − 1 +

1

2

dns
d(ln k)

ln

(
k

k∗

)
+ . . .

)
ln

(
k

k∗

)
,

ln [Pt(k)] = ln(At) +

(
nt +

1

2

dnt
d(ln k)

ln

(
k

k∗

)
+ . . .

)
ln

(
k

k∗

)
,

(3.48)

where As (At) denotes the scalar (tensor) amplitude, ns (nt) the scalar (tensor) spectral in-
dex, k∗ the mode k crossing the Hubble radius, andR the comoving curvature perturbation,
which is approximately equal to the comoving curvature perturbation on uniform density
hypersurfaces, ζ, on large scales. Henceforth we will focus on the scalar part of the power
spectrum. For considering the pure power-law form of Eq. (3.48), PR(k) = As (k/k∗)

ns−1,
the Planck collaboration [38] recently found the best fit values As = 2.2 × 10−9 and
ns = 0.9603 (±0.0073) for k∗ = 0.05 Mpc−1, which constrain all inflationary scenarios.
However, also an extension to this simple power-law shape is currently investigated taking
into account bumps, sharp features, or wiggles. These types of deviations are well moti-
vated by, e.g., implications of the recent BICEP2 data [41–44], or special features of the
inflaton potential [45, 46]. Such features, in turn, might indicate non-linear physics and
thus correspond to non-vanishing non-Gaussianity parameters [38]. These features would
therefore be an indicator for inflation models beyond single-field slow-roll scenarios. J

The primordial power spectrum is a valuable quantity since it depends on the physics
of the early Universe. Its inference process is highly non-trivial. Therefore we would
like to present two Bayesian, non-parametric reconstruction schemes in the framework of
information field theory, which, however, are related to each other. To reconstruct the
primordial power spectrum we have to know the inferred field ζ and its variance. This
means we are interested in the posterior pdf of ζ. Following Sec. 3.2 the Hamiltonian is
given by

H(d, ζ) = − ln [G(d−Rζ,N)P (ζ)] . (3.49)

In general, Eq. (3.49) cannot be evaluated further because the shape of P (ζ) is unknown.
Fortunately, a Gaussian is a very good approximation for P (ζ) as argued in Sec. 3.2.2 and
motivated by the actual constraints on fNL [39] that becomes exact if fNL = gNL = 0. This
enormously simplifies the derivation and under this approximation the posterior is given
by

P (ζ|d) = G(ζ −mw, D), (3.50)

with mw ≡ Dj =
(
Ξ−1 +M

)−1
R†N−1d the Wiener filter solution.

One may also be interested in the case9 where |fNL| ∝ O(1) and gNL 6= 0. Here, the
quantity of interest is the power spectrum of the primordial Gaussian perturbation ζ1,
Pζ1(k). The approach of reconstructing ζ1 for fixed non-Gaussianity parameters is already

9We declare the case of |fNL| ∝ O(1) to be interesting due to the current constraints on fNL. The discussion
that follows, however, is generic and therefore valid for arbitrary values of fNL and gNL still satisfying the
saddle-point approximation, Eq. (3.11).
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described in Sec. 3.2.2 and determined by Eqs. (3.9) and (3.10). Therefore the posterior is
given by G(ζ1− ζ̄1, Dd,fNL,gNL), which implicitly depends on parameters of non-Gaussianity
or alternatively on parameters of inflation.

Given a reconstructed map of ζ or ζ1 and its uncertainty D or Dd,fNL,gNL , the challenge
is now to appropriately infer the power spectrum Pζ(k) or Pζ1(k) under consideration of
the uncertainty. For this purpose we suggest the two following approaches (Eqs. (3.55)
and (3.58)), which have already successfull applications in cosmology and astrophysics,
e.g., Refs. [84–87]. We will show that these methods are able to reconstruct the spectrum
of the primordial curvature perturbations even in case of significant non-Gaussianity and
partial sky coverage.

3.5.2. Filter formulae

Critical filter. The first filter captures the concepts of the well known Karhunen-Loève
[88, 89] and Feldman-Kaiser-Peacock [90] estimators and has been derived in Ref. [25]. The
aim here is to reconstruct the power spectrum for Gaussian signals, which determines the
statistics completely under the cosmological assumption of translationally and rotationally
invariance. This implies the existence of an orthonormal basis O in which Ξ become
diagonal, e.g., the Fourier space with elements ~k = (k1, . . . , k3) ∈ R3 of length k ≡ |~k|
(Fourier mode) for signals defined in Euclidean space, or the spherical harmonics space for
signals defined on the sphere. Following Ref. [25], the signal covariance, here Ξkk′ , and
its inverse are linearly parametrized by non-overlapping basis functions fi(k), commonly
denoted as spectral bands, and coefficients p̃,

Pζ(k) =
∑
i

p̃ifi(k), (3.51)

where (Ξi)xy = O∗xkfi(k)Oky, and therefore

Ξp̃ =
∑
i

p̃i Ξi and Ξ−1
p̃ =

∑
i

p̃−1
i Ξ−1

i . (3.52)

Ξ−1
i denotes the pseudo-inverse of the band-variances, given by

(
Ξ−1
i

)
xy

= O∗xkgi(k)Oky
with gi(k) = 1/fi(k) if fi(k) > 0 and gi(k) = 0 if fi(k) = 0 [25]. In all cases addressed in
this paper the non-overlapping basis functions fi(k) are projections from the vectors ~k onto
the Fourier modes k = |~k| =

√
k2

1 + k2
2 + k2

3. This way, the primordial power spectrum
can be parametrized as in Eq. (3.42).
The priors of p̃ are assumed to be mutually independent, P (p̃) =

∏
i P (p̃i), and obey an

inverse Gamma distribution,

P (p̃i) = I(p̃i;αi, qi) ≡
1

qiΓ(αi − 1)

(
p̃i
αi

)−αi
exp

(
− qi
p̃i

)
, (3.53)

with Γ the Gamma function. Constructed in this way one obtains an informative prior by
αi � 1 and a non-informative prior, e.g. Jeffreys prior, by αi = 1, qi = 0.
To derive the critical filter formula we calculate the minimum of the ζ marginalized

Hamiltonian,

H(d, p̃) =
1

2
tr (ln Ξ)− 1

2
tr (lnD)− 1

2
j†Dj +

∑
i

(αi − 1)τi + qie
−τi , (3.54)
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with respect to τ ≡ ln(p̃), thereby maximizing the posterior probability for the logarithmic
power spectrum yielding the coupled system of equations [25]

mp̃min = Dp̃minj,

p̃i,min =
qi + 1

2tr
(
mp̃minm

†
p̃min

+Dp̃min

)
Ξ−1
i

αi − 1 + 1
2tr
(
Ξ−1
i Ξi

) .
(3.55)

For the parameter choice according to Jefferys prior, αi = 1, qi = 0, Eq. (3.55) is called
critical filter. To solve this coupled system iteratively, we need a boundary condition, e.g.,
for the power spectrum (remember that Dp̃min depends on the spectral coefficients p̃i,min).
A well motivated initial guess might be the primordial power spectrum from Planck [38],
which is a pure power law, Eq. (3.48).

Critical filter with smoothness prior. For some physical reasons [38], e.g., that
physics do not change suddenly during inflation, one may want to enforce the reconstructed
power spectrum to be smooth. This can be incorporated by an extension of the prior [63],
given by

P (τ) = Psm(τ)
∏
i

P (τi), (3.56)

with the smoothness prior

Psm(τ) ∝ exp

(
− 1

2σ2
τ

∫
d(ln k)

(
∂2 ln p̃(τk)

∂(ln k)2

)2
)
≡ exp

(
−1

2
τ †Tτ

)
, (3.57)

which punishes any deviation from a power-law power spectrum with a strength στ . This
means in the limit of στ →∞ we recover Eq. (3.55) whereas for a finite decreasing, espe-
cially small value of στ the smoothness increases. Here we introduced the linear operator
T whose explicit form can be found in Ref. [63]. T includes the integral as well as the
scaling constant στ . An analogous derivation to the critical filter case then yields

p̃i,min =
qi + 1

2tr
(
mp̃minm

†
p̃min

+Dp̃min

)
Ξ−1
i

αi − 1 + 1
2tr
(
Ξ−1
i Ξi

)
+ (Tτ)i

. (3.58)

In comparison to Eq. (3.55) the result exhibits the additional term (Tτ)i in the denominator
that enforces smoothness. By appropriately choosing the scale parameter στ one is able to
permit the reconstruction of features on specific scales. However, for a detailed discussion
of the critical filter with smoothness prior including the choice of στ see Ref. [63].

3.5.3. Numerical toy example

3.5.3.1. Inferring a power spectrum of approximately Gaussian curvature
perturbations

To demonstrate the performance of the filter formulae, Eqs. (3.55) and (3.58), according to
the inference of a power spectrum of approximately Gaussian curvature perturbations ζ we
use the two dimensional test case of Sec. 3.4.2.2, but with Npix = 106, and fNL, gNL ≈ 0 to
satisfy the condition of negligible non-Gaussianity. Additionally, we adopt the parameter
choice according to Jefferys prior, i.e. αi = 1, qi = 0, and a scaling constant of σ2

τ = 0.1.
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Figure 3.5 (a) shows the result and confirms the properness of the reconstruction, which
exhibits typical deviations from the true underlying spectrum for low k modes due to
the effect of cosmic variance. Reconstruction errors are not included in the figure but
could be incorporated by evaluating the inverse Hessian of the Hamiltonian H(d, p̃) for
real scenarios, as done in Ref. [63].
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Figure 3.5.: Primordial power spectrum reconstruction of approximately Gaussian curvature
perturbations without (a) and with [(b), (c)] features by a critical filter solely (red dotted line) and
including a smoothness prior (green dashed line) according to Eqs. (3.55) and (3.58) and compared
to the original power spectrum (blue solid line).

The ability of a non-parametric reconstruction of features on the power spectrum like
bumps and cutoffs as well as dealing with a partial sky coverage is also illustrated by Figs.
3.5 [(b),(c)] and 3.6. For the latter case we consider a mask in addition to the response,
Rmask, so that the sky is observed by 50% only. In all cases the critical filter with and
without smoothness prior works well, i.e., it is able to reconstruct the primordial power
spectrum including possible features.
We want to emphasize, however, that for a proper reconstruction the condition of Gaus-

sianity has to be fulfilled because the approach introduced is very sensitive to deviations
from this restriction. To illustrate this we consider again the curvaton scenario where
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Figure 3.6.: Primordial power spectrum reconstruction of approximately Gaussian curvature
perturbations [see (b)] at a sky coverage of 50% [see (a)] by a critical filter solely (red dotted
line) and including a smoothness prior (green dashed line) according to Eqs. (3.55) and (3.58) and
compared to the original power spectrum (blue solid line).

fNL and gNL are parametrized as a function of κ, cf. Eq. (3.30). This means that for
large values of κ the curvature perturbation ζ is now falsely assumed to be Gaussian with
deviations according to Eq. (3.30). Fig. 3.7 shows the performance of the critical filter
with smoothness prior for this case. Panel (a) shows how the reconstructed power spec-
trum deviates from the true underlying one as a function of the level of non-Gaussianity,
parametrized by κ. For a small level of non-Gaussianity there is no observable effect on
the spectral index ns whereas the scalar amplitude As depends strongly on κ as shown
by panel (c) and (d). The quadratic fits appearing within this panels obey the formula
109As(κ) = aqκ

2 + bqκ+ cq with aq = 0.0036, bq = −0.044 and cq = 2.3 for κ ≥ 1, which
can be reformulated analytically into a fNL dependency, if we neglect contributions of the
trispectrum (see App. B.2).
For a higher level of non-Gaussianity also ns becomes affected [Fig. 3.7 (b)]. The two

linear fits in panel (b) are generated independently, because the region of κ < 1 is un-
physical. The physically relevant fit for κ ≥ 1 obeys the formula ns(κ) − 1 = alκ + bl
with al = 8 × 10−4 and bl = −0.04. The latter formula can also be reformulated into a
dependency on fNL. Additionally one can derive a quadratic relation between the spectral
index and the scalar amplitude, cf. App. B.2.
Note that these particular dependencies on the level of non-Gaussianity (or alternatively

on inflationary parameters) is not a generic statement, but valid for the critical filter with
and without smoothness prior, which were not informed here about the presence of non-
linearities, and that the magnitude of the deviations depends additionally on the number
of pixels used.

3.5.3.2. Inferring a power spectrum of non-Gaussian curvature perturbations

Now we show that the critical filter with and without smoothness prior in combination with
results of Sec. 3.2 is able to reconstruct the spectrum of the Gaussian, primordial curvature
perturbations ζ1 even in case of significant non-Gaussianity. For this case (of inferring a
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Figure 3.7.: Primordial power spectrum reconstruction of non-Gaussian curvature perturbations,
which are falsely assumed to be Gaussian, in the curvaton scenario for various choices of κ by a
critical filter solely and including a smoothness prior according to Eqs. (3.55) and (3.58). Panel (a)
shows the comparison to the original power spectrum. The dependence of As [(c), (d)] and ns − 1
[(b)] on κ has been determined by conducting a linear fit to the reconstructed power spectrum for
k & 100.

power spectrum of non-Gaussian curvature perturbations ζ) we leave all numerical spec-
ifications in place, but use Npix = 1.6 × 105, Pζ1(k)δkk′ according to Eq. (3.48), and use
κ = 7.2 (=̂ fNL, gNL = 7.2,−29), 13.5 (=̂ fNL, gNL = 15,−56) to seed a non-vanishing level
of non-Gaussianity. The reconstructed map of ζ1, from which we infer the power spectrum,
is calculated according to Eq. (3.9) and its uncertainty according to Eq. (3.10). Note that
these quantities now depend on fNL(p) and gNL(p) and thus on a specific inflation model.
Figure 3.8 shows the result both for critical filter and its extension including a smoothness
prior. Reconstruction errors are also not included. Compared with the improper recon-
structed power spectra of Fig. 3.7 (a) (compare in particular the case of κ = 13.5), the
advanced method used here yields adequate results. This comparison also suggests that
one could infer the level of non-Gaussianity by measuring both, non-Gaussian and Gaus-
sian power spectrum. I These spectra might be inferred from, e.g., T− and B−modes due
to the fact that B−modes might be less non-Gaussian than T− modes [91]. Afterwards
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the level of non-Gaussianity could be determined by the difference between the respective
spectral amplitudes. J
Once the power spectrum of the Gaussian curvature perturbation ζ1 is determined the

power spectrum of the non-Gaussian curvature perturbation,
〈
ζζ†
〉
P (ζ)

, can also be calcu-
lated from Pζ1(k). The distribution P (ζ) required for this calculation can be calculated
approximately and is pointed out, e.g., in Ref. [92].
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Figure 3.8.: Primordial power spectrum reconstruction of non-Gaussian curvature perturbations
with non-vanishing [(a) κgen = 7.2, (b) κgen = 13.5] non-Gaussianity by a critical filter solely (red
dotted line) and including a smoothness prior (green dashed line) according to Eqs. (3.55) and
(3.58) and compared to the original power spectrum (blue solid line).

3.6. Conclusion

We have presented a novel and generic method to infer inflation models from observations
by the non-Gaussianity parameters fNL and gNL and how to reformulate this method to
infer specific parameters of inflation models, p, directly (see especially Secs. 3.2 and 3.3).
This approach, i.e. the analytical derivation of a posterior for fNL and gNL as well as for
p can be used to further distinguish between the already restricted amount of inflation
models. It is formulated in a generic manner in the framework of information field theory,
so that it is applicable to CMB data as well as to LSS data (see especially the three
dimensional example of Sec. 3.4.2) by tuning the response appropriately. The analyticity of
the method, achieved by a saddle-point approximation, allows to dispense with numerically
expensive sampling techniques like the commonly used Monte Carlo method. The analytic
approximation we introduced has been validated successfully by the DIP test [65].
The second quantity of interest here is the primordial power spectrum due to its far-

reaching implications for inflationary cosmology. We have presented two computationally
inexpensive, approximative Bayesian methods to infer the primordial power spectrum from
CMB data, the so called critical filter, Eq. (3.55), and an extension thereof with smooth-
ness prior, Eq. (3.58). Both methods allow a non-parametric reconstruction of the power
spectrum including the reconstruction of possible features on specific scales. Additionally,
both methods are able to perform this inference process even in the case of partial sky
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coverage and non-Gaussianity. We have argued that this property would allow to infer
the level of non-Gaussianity of a field if one could measure both, the power spectrum of
the non-Gaussian and Gaussian curvature perturbations. These spectra might be inferred
from, e.g., T− and B−modes due to the fact that B− modes might be less non-Gaussian
than T− modes [91]. A fully quantitative analysis thereof, however, is left for future work.





4. All-sky reconstruction of the primordial
scalar potential from WMAP
temperature data

Note: This chapter has been published in JCAP 2, 041 (2015) [93].

4.1. Introduction & motivation

The cosmic microwave background radiation (CMB) is presently one of the most informa-
tive data sets for cosmologists to study the physics of the early Universe. Of actual interest
is in particular the verification of the existence of an inflationary phase of the Universe
and investigations of the physical properties of the involved inflaton field(s). An essential
quantity is thereby the primordial adiabatic scalar potential Φ. Its statistic, especially
the two-point function, was determined during inflation, when the quantum fluctuations
of the inflationary field were frozen during their exit of the Hubble horizon. This statistic
is conserved on super-horizon scales during the epoch of reheating until the individual
perturbed modes re-enter the horizon. Therefore, significant information on the inflation-
ary phase is encoded in the observable quantity Φ. The processes translating the initial
modes after their horizon re-entry into the observed CMB fluctuations are described by the
so-called radiation transfer functions, see Refs. [4, 64]. As a consequence, many inference
methods aim at constraining parameters of the early Universe involve Φ or their statistics.
Therefore the CMB fluctuations provide a highly processed view on the primordial scalar
potential. In this work, we attempt, however, their direct reconstruction and visualization
via Bayesian inference. Once they are reconstructed a direct investigation of their statistics
is possible, e.g., the inference of the primordial power spectrum, their connection to large
scale structure [94], or primordial magnetic fields [95, 96].
The Planck observation, Ref. [39], of the almost homogeneous and isotropic CMB have

shown that the statistical deviations from Gaussianity of the primordial modes/perturbations
are still consistent with zero. Therefore, the two-point correlation function of Φ seems to
describe nearly fully the statistics of the early Universe up to high accuracy. This fact
simplifies the inference of these modes significantly (see, e.g., Ref. [31, 53]), and enables a
well justified all-sky reconstruction of the primordial scalar potential from real data.
This work is organized as follows. In Sec. 4.2 we present a Bayesian inference approach

to reconstruct the primordial scalar potential. This method, initially proposed by Ref. [64],
requires the knowledge of the primordial power spectrum. We show further how Φ and
its spectrum can be inferred (unparametrized) even without such an a priori knowledge or
assumption. In Sec. 4.3, we reconstruct the primordial scalar potential with corresponding
1σ-uncertainty from WMAP temperature data [97] and partially its initial power spec-
trum. In Sec. 4.4, we summarize our findings. Exact derivations of all used reconstruction
methods can be found in appendices C.1-C.3.
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4.2. Inference approach

We derive the inference methods within the framework of information field theory (IFT)
[21], where Φ is considered to be a physical scalar field, defined over the Riemannian
manifold R3. Since there is no solid evidence that Φ is non-Gaussian, we assume its
statistics to be Gaussian with a covariance matrix determined by its power spectrum1, i.e.,

Φ←↩ G(Φ, PΦ) with PΦ(k, q) ≡
〈

ΦΦ†
〉

(Φ)
= (2π)3δ(k − q)PΦ(k). (4.1)

Thereby we introduced the notation

G(a,A) ≡ 1√
|2πA|

exp

(
−1

2
a†A−1a

)
and 〈 . 〉(a) ≡

∫
Da . G(a,A), (4.2)

with corresponding inner product

a†b ≡
∫
R3

d3x a∗(x)b(x) (4.3)

for the fields a, b. Here, † denotes a transposition, t, and complex conjugation, ∗. The
CMB data, on the other hand, are of discrete nature, i.e., d ≡ (d1, . . . , dn)t ∈ Rn, n ∈ N.

4.2.1. Temperature only

To set up a Bayesian inference scheme for the primordial scalar potential Φ we have to
know how the data d are related to Φ. In the case of the data being the WMAP CMB
temperature map this relation is well known, given by [98]

d`m ≡ (RΦ)`m + n`m

= M `m
`′m′

B`′
2

π

∫
dk k2

∫
dr r2Φ`′m′(r)g

T
`′ (k)j`′(kr) + n`m,

(4.4)

where gT` (k) denotes the adiabatic radiation transfer function of temperature, j`(kr) the
spherical Bessel function, n ∈ Rn the additive Gaussian noise, and B` the beam transfer
function of the WMAP satellite. Repeated indices are implicitly summed over unless they
are free on both sides of the equation. We assume the noise to be uncorrelated to Φ. The
operator R, which transforms Φ into the CMB temperature map, is assumed to be linear
consisting of an integration in Fourier space as well as over the radial (comoving distance)
coordinate plus the instrument’s beam convolution and a foreground mask,M . Since there
is currently no hint for isocurvature modes we exclude them from all calculations.
The next logical step, the construction of an optimal2 linear filter within the framework

of IFT, e.g. the Wiener filter [27] (see, e.g., Ref. [21]), is straightforward. Given the actual,
very high resolution of current CMB data sets this, however, turns out to be extremely
expensive.
Fortunately, there is a way to split this single computation of reconstructing the primor-

dial scalar potential into multiple. Instead of reconstructing the three-dimensional Φ in a
single blow, one can reconstruct it spherically slice by slice, each slice corresponding to a
1Here we assume that Φ is also statistically homogeneous and isotropic.
2Optimal with respect to the L2−error norm.
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specific radial coordinate starting from r = 0 to beyond the surface of last scattering (LSS),
rLSS. To understand this procedure we want to recall the definition of the response stated
in Ref. [21], where R is the part of the data which correlates with the signal, RΦ = 〈d〉(d|Φ).
It is straightforward to show that this is equivalent to

R ≡
〈
dΦ†

〉
(Φ,d)

〈
ΦΦ†

〉−1

(Φ,d)
. (4.5)

To obtain the response acting on a sphere with corresponding comoving distance r it can
now also be defined as the expectation value of the data given Φ restricted to a sphere in-
stead of over the three-dimensional regular space, i.e., R(2)Φ(r = const.) = 〈d〉(d|Φ(r=const.)).
The exact derivation of this modification can be found in App. C.1 and yields

R
(2)
`m
`′m′

(r) = M `m
`′′m′′

B`′′

∫
dk k2PΦ(k)j`′′(kr)g

T
`′′(k)∫

dk k2PΦ(k)j2
`′′(kr)

δ`′′`′δm′′m′

≡ M `m
`′′m′′

B`′′R`′′δ`′′`′δm′′m′ ,

(4.6)

with superscript “(2)” indicating that this response acts on the (two-dimensional) sphere
Φ`m(r = const.). Initially, we assume PΦ to be known (see Sec. 4.2.3 if not), i.e. that it
is determined via the primordial power spectrum of comoving curvature perturbations R,
given by

PR(k) ≡ 2π2

k3
As∗

(
k

k∗

)ns∗−1

, (4.7)

with k∗ the pivot scale with related primordial scalar amplitude As∗ and scalar spectral
index ns∗. During matter domination, the relation

R = −5

3
Φ (4.8)

is valid. Hence, the primordial power spectrum of Φ is given by

PΦ(k) =
9

25

2π2

k3
As∗

(
k

k∗

)ns∗−1

. (4.9)

Figure 4.3 shows the predicted data power spectrum using R(2)(r = const.) without
instrumental beam, noise, or mask. Having this response, we are able to construct the
(data-space version of the) Wiener filter formula (see App. C.13 for details),

m(2)(r) = PΦ
` (r)R(2)†(r)

[
C̃TT +N

]−1
d, (4.10)

with PΦ
` (r) the primordial power spectrum projected onto the sphere at comoving distance

r and C̃TT = RPΦR† = MBCTTB†M † where

CXY` =
2

π

∫
dk k2PΦ(k)gX`(k)gY `(k). (4.11)

X,Y can denote temperature T or polarization E−mode. Equation (4.10) provides an
optimal estimator of Φ`m(r) and was stated first3 in Ref. [99]. The huge advantage of this
3For a detailed derivation see App. C.1 and C.2.
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method is the reduction of computational time, by separating the whole inverse problem
into many independent distance-dependent ones. This method permits an easy paral-
lelization of the Wiener filter4 in the three-dimensional space. The 1σ uncertainty of this
estimate, ∆m(2)(r), is given by [21]

∆m(2)(r) ≡ ±
√

diag [D]

= ±

√
diag

[
PΦ
` − PΦ

` R
(2)†
(
C̃TT +N

)−1
R(2)PΦ

`

]
,

(4.12)

where we have introduced the posterior covariance D in data space. A proxy of this
formula, used in our numerical calculations, can be found in App. C.2.

4.2.2. Temperature and polarization

With future data releases of current experiments like Planck [33], it should be possible
to include polarization data (P) with acceptable signal-to-noise level into considerations.
Including polarization measurements, parametrized by the Stokes parameters Q,and U ,
the data is given by

d =


dT

dQ

dU

 = RΦ +


nT

nQ

nU

 (4.13)

with corresponding response

R =


MTB 0 0

0 MPB 0

0 0 MPB

W T,E
T,Q,U

︸ ︷︷ ︸
≡RT,ET,Q,U


RT

RE

0

 , (4.14)

where RT,E captures the radiation transfer, i.e.,(
RT,EΦ

)
`m
≡ 2

π

∫
dk k2

∫
dr r2Φ`m(r)gT,E` (k)j`(kr). (4.15)

The adiabatic radiation transfer functions are gT,E for temperature and E-mode polariza-
tion, respectively. For the formal definition of gT,E see, e.g., Refs. [100, 101]. The operator
W T,E
T,Q,U transforms a vector, containing temperature and E-mode polarization, into Stokes

I,Q, U parameters, which are directly measured by experiments like WMAP or Planck.
Therefore the generalized data-space version of the Wiener filter equation reads

m(2)(r) = PΦ
` (r)

(
R

(2)
T

†
(r) R

(2)
E

†
(r) 0

)(
RT,ET,Q,U

)†

×

RT,ET,Q,U

CTT` CTE` 0

CTE` CEE` 0

0 0 0

(RT,ET,Q,U)† +N


−1

dT

dQ

dU

 ,

(4.16)

4The matrix inversion within Eq. (4.10), often solved by Krylov subspace methods like the conjugate
gradient method, is often computationally (very) expensive.
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where R(2)
X=T,E denotes the two-dimensional version of RX , analogous to Eq. (4.6). The

uncertainty is given analogously to Eq. (4.12).
The inclusion of polarization data will result in a significant improvement of reconstruc-

tion quality not least because gT` (k) and gE` (k) are out of phase and thus compensating the
`−blind spots of each other, which was also noticed by Ref. [99] and can be observed in
their Fig. 1. This is, however, only correct if the polarization data is not highly dominated
by noise.

4.2.3. Primordial power spectrum reconstruction

Once a signal estimate (optimally with uncertainty) is available the power spectrum of the
stochastic process underlying the signal generation might be inferred. Usually, however,
an initial guess of the signal power spectrum is required to obtain a Wiener filter signal in
the first place. This initial guess spectrum can affect the spectrum estimate and therefore
might act as a hidden prior. In order to forget the initial guess, the procedure of signal
and spectrum inference should be iterated until it has converged onto a spectrum that is
then independent of the initial starting value. Fortunately, the primordial power spectrum
is constrained well by the existing5 CMB data-sets so that this process should converge
rapidly. This iterative, unparametrized method was derived in Refs. [25, 103] and named
critical filter. It can be regarded as a maximum a posteriori estimate of the logarithmic
power spectrum and the assumption of a scale invariant Jeffreys prior of its amplitudes.
The power spectrum on the sphere is written as

PΦ
~̀~̀′ = δ~̀~̀′P

Φ
` with ~̀≡ (`,m). (4.17)

The iterative critical filter formula including a spectral smoothness prior is then given by
Eq. (4.10) and

PΦ
` =

∑
{~̀′|`′=`}

(
m

(2)
~̀ m

(2)†
~̀′ +D~̀~̀′

)
ρ` + 2(S lnPΦ)`

, (4.18)

where ρ` =
∑
{~̀′|`′=`} 1 is the number of degrees of freedom on the multipole ` and S an

operator that enforces smoothness (for details see Ref. [103]).

4.3. Temperature-only reconstruction of the primordial scalar
potential

4.3.1. Input values and settings

We analyze the full resolution (nside = 512) coadded nine-year WMAP (foreground-cleaned)
V-band frequency temperature map, masked with the primary temperature analysis mask
(KQ85: 74.8% of the sky). The data as well as the corresponding beam transfer function
and noise properties (see App. C.3) we used can be found at http://lambda.gsfc.nasa.
gov/product/map/dr5/m_products.cfm [97, 104]. We did not take polarization data into
considerations due to the suboptimal signal-to-noise levels. To be consistent with the
WMAP team’s measurements we use the cosmological parameters obtained by their data

5See section 7 of Ref. [10] and Ref. [102] for an overview of the literature on such methods.

http://lambda.gsfc.nasa.gov/product/map/dr5/m_products.cfm
http://lambda.gsfc.nasa.gov/product/map/dr5/m_products.cfm


68
Chapter 4. All-sky reconstruction of the primordial scalar potential from WMAP

temperature data

r=0.80rLSS

-0.00018 0.00018

r=0.97rLSS

-0.00018 0.00018
r=0.99rLSS

-0.00018 0.00018

r=1.00rLSS

-0.00018 0.00018
r=1.01rLSS

-0.00018 0.00018

r=1.03rLSS

-0.00018 0.00018
r=1.05rLSS

-0.00018 0.00018

r=1.10rLSS

-0.00018 0.00018

Figure 4.1.: All-sky maps of the reconstructed primordial scalar potential at different comoving
distances according to Eq. (4.10) in the vicinity of the recombination sphere with r = rLSS. A
Mollweide projection is used.

analysis to compute the radiation transfer function as well as the primordial power spec-
trum. In particular this has been done by using gTfast6, which is based on CMBFAST7 [105].
We used the following settings: pivot scale k∗ = 0.002 Mpc−1, spectral index ns∗ = 0.962,
spectral amplitude As∗ = 2.46× 10−9, noise level σV−band

0 = 3.131× 10−3 K, CMB temper-

6http://www.mpa-garching.mpg.de/~komatsu/CRL/nongaussianity/radiationtransferfunction/
7http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm

http://www.mpa-garching.mpg.de/~komatsu/CRL/nongaussianity/radiationtransferfunction/
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
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Figure 4.2.: 1σ uncertainty maps of the corresponding all-sky maps of of Fig. 4.1 according to
Eq. (C.19) in the vicinity of the recombination sphere with r = rLSS. A Mollweide projection is
used. Note that the color bar for r = 0.80rLSS is a different one, showing the natrual bounds of
the uncertainty map. All uncertainty maps share this morphology.

ature TCMB = 2.726 K, optical depth τ = 0.088, density parameters Ωb = 0.046, Ωc =
0.0231, ΩΛ = 0.723, Hubble constantH0 = 70.2 km/s/Mpc, helium abundance YHe = 0.24,
and the effective number of massless neutrino species N eff

ν = 3.04. The resulting distance
to the LSS amounts 1.40147× 104 Mpc.
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Figure 4.3.: Predicted power spectra of data simulated with the estimator response R(2) compared
to the CMB data power spectrum. The `−blind spots move from large scales at distances r < rLSS

to small scales at r > rLSS. The amplitude of the predicted power spectra gets maximal at r = rLSS.
For clarity and comprehensibility we exclude the instrumental beam, noise, and observational mask.

4.3.2. Results

With the parameters defined in the previous paragraph, we have reconstructed a shell
around the last scattering surface (0.8 × rLSS to 1.1 × rLSS) in 151 slices as well as ad-
ditional 6 slices within the range (50% − 80%) × rLSS from real data, see Fig. 4.1. For
all reconstructions 1σ-uncertainty maps are provided, see Fig. 4.2 as well as the relative
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Figure 4.4.: Left: Estimated primordial power spectrum of Φ(r = rLSS) according to Eq. (4.18).
Masking effects as well as the estimators power loss are compensated. At scales smaller than
` ≈ 300 the reconstruction fails due to sub-horizon physics [99] and noise-dominance. Right:
Relative 1σ-uncertainty along the radial coordinate. Minimal values of σ correspond to Eq. (C.18)
with “no mask”, maximal values to the same equation with “all mask”.

1σ-error along the radial coordinate, see Fig. 4.4 (Right). A detailed description of the
calculation of these uncertainty maps can be found in App. C.2. The respective data files of
the reconstruction can be found at http://www.mpa-garching.mpg.de/ift/primordial/.
For the most interesting sphere at r = rLSS we also provide a power spectrum estimate,
see Fig. 4.4 (Left). This power spectrum estimate has been obtained with the critical
filter formula with smoothness prior but without iterations8 and D set to zero (defined in
Eq. (4.12)).
We also phenomenologically9 corrected for the effect of masking and power-loss in the

predicted power spectra of data simulated with the estimator response R(2) in comparison
to the power spectrum of Eq. (4.11). Therefore our spectrum estimate should rather be
regarded as providing a consistency check of the algorithm than to necessarily provide pre-
cisely the cosmological power spectrum. Having stated these caveats, we like to note that
a deviation from the power-law primordial power spectrum is not apparent over roughly
one order of magnitude in Fourier space.
Some of the reconstructed slices of the primordial scalar potential might look suspiciously

crumby at first. The reason for this property are the `−blind spots in the response R`.
Figure 4.3 shows the noiseless data power spectrum, CTT` = RPΦR†, as well as the power
spectrum R(2)PΦ

` R
(2)† expected from noiseless, distance dependent data obtained with the

estimator response, d(2) = R(2)Φ. The `−blind spots are clearly recognizable, which move

8With the correct application of the critical filter (iterative) one might be able to detect features in
the primordial power spectrum [31]. This, however, would require a highly resolved data set including
polarization to compensate for the `−bind spots (one cannot get rid of with temperature data only) with
a high signal-to-noise level in T -, Q-, and U -data maps. Perfect candidates for such data sets are future
CMB experiments and Planck polarization data releases.

9The power-loss is corrected by convolving the reconstructed Φ with α` ≡
√
CTT` /(R2

`P
Φ
` ) ∀` : R2

`P
Φ
` 6= 0

before performing the power spectrum estimation. We also investigated how the mask affects the power
spectrum of Φ, by calculating βl ≡

〈
power

[
Rmask(Φ)

]
/PΦ

`

〉
where power[ . ] denotes the application of

the critical filter formula with smoothness prior. We re-scaled the inferred power spectrum with 1/β`.

http://www.mpa-garching.mpg.de/ift/primordial/
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from large scales at distances r < rLSS to small scales at r > rLSS, where the amplitude of
this power spectrum gets maximal at r = rLSS.
The numerical and computational effort to reconstruct one slice by one CPU amounts

to roughly 45 minutes, which simultaneously represents the time for reconstructing the
whole three-dimensional primordial scalar potential at full parallelization. In our numerical
implementation we used the conjugate gradient method to solve Eq. (4.10).

4.4. Conclusion & outlook

We have presented a reconstruction of the primordial scalar potential Φ with corresponding
1σ-uncertainty from WMAP temperature data. This has been achieved by setting up an
inference approach that separates the whole inverse problem of reconstructing Φ into many
independent ones, each corresponding to the primordial scalar potential projected onto a
sphere with specific comoving distance. This way the reconstruction is done sphere by
sphere until one obtains a thick shell of nested spheres around the surface of last scattering.
This results in a significant reduction of computational costs (since the reconstruction
equation (Wiener filter) parallelizes fully), if only the small region around the last scattering
surface is reconstructed, which is accessible through CMB data.
We did not include polarization information yet due to the suboptimal signal-to-noise

ratios of the WMAP polarization data. Hence we do not expect a huge improvement when
additionally including WMAP Stokes Q and U parameters into the Wiener filter equation.
This, however, will definitely change when the polarization data of Planck will be available
in the near future. Once one uses simultaneously temperature and polarization data, the
`−blind spots in the reconstructions will disappear and with it the crumbliness of the
maps. At this point it also might be more rewarding to apply the critical filer equations
to simultaneously obtain the power spectrum of the primordial scalar potential.



5. Stochastic determination of matrix
determinants

Note: This chapter has been published in Phys. Rev. E 92, 013302 (2015) [106].

5.1. Motivation

Current and future physical observations generate huge data streams to be analyzed. Par-
ticle physics, biophysics, astronomy, and cosmology are representatives of current scientific
fields of interest that are undergoing a revolution driven by increasing data volume. Typ-
ical large data sets in cosmology are, for instance, observations of the cosmic microwave
background [33, 97] as well as of the large-scale structure [107–109] as they are often
wide- or all-sky observations carried out by telescopes with remarkable resolution. In or-
der to extract information about the universe or physics in general, Bayesian inference
methods becomes more and more frequently used as their large computational demands
become more feasible thanks to technology developments. The signal of interest to be
extracted from data could be almost everything, ranging from just a single parameter
(e.g., the level of local non-Gaussianity of the cosmic microwave background [53, 98]) to a
full four-dimensional reconstruction of the structure growth in the universe [94, 110]. Such
ambitious Bayesian analyses often invoke linear transformations of the data or of estimated
signal vectors.

The size of the involved data and signal spaces often bans the explicit representation
of matrices acting on these spaces by their individual matrix elements. A prominent
example appearing in many analyses is, for instance, the covariance matrix of a multivariate
Gaussian distribution of a vector valued quantity, which describes the two-point correlation
structure of the said quantity. Due to their large dimensions such matrices are often
only representable by a computer routine, which implements the application of the matrix
to a vector without storing or even calculating the individual matrix elements. Such
routines often invoke fast Fourier transformations and other efficient operations, which in
combination render nonsparse matrices into easily computable basis systems. We refer to
such a matrix as an implicit matrix. For instance, calculating the model evidence often
requires calculating determinants of such matrices. This work provides an efficient way to
numerically calculate determinants given only by an implicit matrix representation.

The remainder of this work is organized as follows: In Sec. 5.2 we introduce the formalism
of the stochastic estimation of an implicit matrix and present two numerical examples. Sec-
tion 5.3 provides a perspective of possible applications in science. Results are summarized
in Sec. 5.4.
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5.2. Probing the log-determinant of an implicit matrix

5.2.1. Formalism

Let A = (aij) ∈ Cn×n be an implicitly defined, complex-valued, square matrix of order n.
Implicitly means that the particular entries of the matrix are not accessible, for instance,
if dealing with large data sets, where an explicit storage of A might exceed the memory
of the computer. However, the action of the matrix as a linear operator is assumed to be
known and given by a computer routine implementing the mapping x 7→ Ax.
Motivated by applications in science and statistics (Secs. 5.1 and 5.3), in particular by

signal reconstruction techniques and model comparison in astronomy and cosmology, where
the determinant of a covariance matrix is required (Sec. 5.3), we constrain the variety of
different types of matrices by requesting that the matrix A of interest is either weak diagonal
dominant or Hermitian positive definite. The term weak diagonal dominant is defined by

|aii| ≥
∑
i 6=j
|aij | ∀i, (5.1)

while Hermitian positive definite means

A† = A and x†Ax > 0 ∀x ∈ Cn\{0} (5.2)

with † denoting the adjoint.
The diagonal and the trace of an implicit matrix can be obtained by exploiting common

probing routines [111–114]. A stochastic estimate of the diagonal of the linear operator A
is given by

diag(A) = 〈ξ ? Aξ〉{ξ} ≈
1

M

M∑
i=1

ξi ? Aξi, (5.3)

where ? denotes a componentwise product, M = |{ξ}| the sample size, and 〈·〉{ξ} the
arithmetic mean over ξ with M →∞. The probing vectors ξ ∈ Cn are random variables,
whose components x (x′) fulfill the condition 〈ξxξx′〉{ξ} = δxx′ . Analogously to the diagonal
of an operator its trace can be probed by, e.g.,

tr(A) =
〈
ξ†Aξ

〉
{ξ}

. (5.4)

Recently, there have been investigations to improve these straightforward probing meth-
ods by exploiting Bayesian inference [111]. This has been achieved by reformulating the
process of stochastic probing of an operator’s diagonal (trace) as a signal inference prob-
lem. As a result, it requires fewer probes than the purely stochastic methods and thus
can decrease the computational costs. With the phrase operator probing, be it trace or
diagonal probing, we subsequently refer to the entirety of probing methods in general.
The linear operator A can be split into a diagonal matrix D ∈ Cn×n and a matrix

N ∈ Cn×n, which contains the off-diagonal part of A, i.e.,

A = D +N. (5.5)

We are now interested in the value of its determinant or of its log-determinant, ∆ ≡
ln[det(A)]. In case A is mainly dominated by its diagonal (i.e. ND−1 � 1 spectrally), a



5.2. Probing the log-determinant of an implicit matrix 75

Taylor expansion of the log-determinant might be a reasonable approximation,

∆ = ln[det(D +N)]

= ln[det(D)] + tr
[
ND−1

]
+O

(
tr
[(
ND−1

)2])
,

(5.6)

which is sometimes feasible dealing with implicit operators, e.g., see Refs. [31, 53] for
recent applications in cosmic microwave background physics. This approximation, however,
breaks down when the relation ND−1 � 1 (spectrally) is violated. In order to circumvent
this problem we introduce the quantity

∆(t) ≡ ln[det(D + tN)] (5.7)

with the pseudotime parameter t ∈ [0, 1]. For a sufficiently small t the approximation of
Eq. (5.6) becomes valid. This property can be used together with a few mathematical
manipulations (for details see Appendix D) to obtain the formula

∆ =

∫ 1

0
dt tr

[
N (D + tN)−1

]
+ ∆(0)

=

∫ 1

0
dt
〈
ξ†N (D + tN)−1 ξ

〉
{ξ}

+ ∆(0)

(5.8)

that represents a stochastic estimate of the log-determinant of A using operator probing.
In particular, the following steps are required to evaluate Eq. (5.8):

1. Diagonal (operator-) probing to split A into

A = diag(A)︸ ︷︷ ︸
≡D

+A− diag(A)︸ ︷︷ ︸
≡N

,

2. an approach to invert D + tN in Eq. (5.8), e.g., the conjugate gradient method
[115],

3. trace (operator-) probing to evaluate the integrand,

4. a numerical integration method, e.g., applying Simpson’s rule.

It might immediately strike the eye of the reader that one recaptures the simple first-order
Taylor-expanded version of the log-determinant, Eq. (5.6), when dropping the pseudotime
dependency of the integrand in Eq. (5.8) by requesting t = 0. This means that in case of
dealing with diagonal dominant operators the value of the correct log-determinant might
be received by a coarse numerical integration since the integrand close to t = 0 already
yields the main correction, which might decrease the computational costs, see Sec. 5.2.2.
Equation (5.8) further represents the main result of this paper and can be regarded

as a special case of calculating partition functions (see Sec. 5.3 and Refs. [116, 117]).
Although the first line of it, the integral representation of the log-determinant, was also,
independently of our work, found by mathematicians 10 years ago [118], it is (to our
knowledge) not known in the community of physics or signal inference. The connection to
stochastic estimators, however, is a novel way to evaluate the log-determinant of implicitly
defined matrices that enables previously impossible calculations, see Sec. 5.3.
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5.2.2. Numerical example

We address here a simple and also exactly solvable numerical example referring to (Bayesian)
signal inference problems or, in general, statistical problems in physics (see Secs. 5.3.1
and 5.3.2), where the log-determinant of a covariance matrix A is of interest. If we as-
sume statistical isotropy and homogeneity of a physical field, its covariance matrix can
be parametrized by a so-called power spectrum. This is often a reasonable assumption1,
e.g., in astronomy and physical cosmology, when applying the cosmological principle. In
this case the covariance matrix becomes diagonal in Fourier space,

Akk′ = ckδkk′ , (5.9)

with respective Fourier modes k, k′ and power spectrum ck. It is straightforward to
show that the position space representation of Akk′ , given by Axx′ = F†xkAkk′Fk′x′ with
Fourier transformation F , is nondiagonal if and only if ck 6= const ∀k. In order to apply
the stochastic estimator of the log-determinant we use two special forms of the power
spectrum, given by

ck =
1

(1 + k)α
(5.10)

with α set to 2 or 4. A value of α = 2 describes a mostly diagonal dominant matrix, whereas
α = 4 exhibits a significant nondiagonal structure in position space. To be precise, in the
following we use a regular, two-dimensional, real-valued grid (over T 2) of n = 20×20 pixels
to represent our position space, resulting in a matrix A consisting of n×n = 1.6×105 real
numbers. See Fig. 5.1 for an illustration thereof.

A2
0.2 15.0

A4
0.2 4.7

Figure 5.1.: Illustration of the matrices A2 (left) and A4 (right) in position space with linear
color bars.

For both matrices, which we refer to as A2 and A4, we apply Eq. (5.8) given an ex-
plicit and implicit numerical implementation. For the explicit variant there also exist
1Referring to Bayesian evidence calculations such a matrix might be the prior or posterior covariance, see
Sec. 5.3 for details.
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Table 5.1.: Results of the numerical determinant calculations with and without probing.
The absolute errors of the probing method are defined by ε1 = |∆explicit(1) − ∆implicit(1)| and
ε2 = |∆correct − ∆implicit(1)|. Differences between ε1 and ε2 arise from the discretized, numerical
integration.

A2 A4

∆(0) -1308.05 -1771.57

∆correct -1566.99 -3107.28

∆explicit(1) -1566.81 -3107.29

∆implicit(1) -1565.33 -3108.41

m 10 1000

M 8 8

ε1 1.48 1.12

ε2 1.66 1.13

well-understood, precise numerical methods2 to calculate the determinant. Therefore, the
numerical results of such a method can be regarded as our gold standard and hence serve
as a reference for the probing results. Henceforth we will refer to it using the subscript
“correct”. Both variants, the explicit and implicit implementation, are realized using the
tools of NIFTy [30].
After the separation of A2 and A4 into diagonal and off-diagonal parts by applying

diagonal probing we calculate the integrands of Eq. (5.8) for them-part-discretized interval
of t ∈ [0, 1] by using the conjugate gradient method as well as trace probing and perform
the numerical integration afterwards by using Simpson’s rule. The operator probing as well
as the conjugate gradient method have also been realized using NIFTy. Furthermore
we introduce the quantities

∆(x) ≡
∫ x

0
dt tr

[
N (D + tN)−1

]
+ ∆(0), x ∈ [0, 1] (5.11)

to study the convergence to the final value and ∆(m) to investigate the dependency on the
discretization of the integration interval, see Figs. 5.2, 5.3, and 5.4.
We used a rather low sample size ofM = 8 for trace and diagonal probing [see Eqs. (5.4)

and (5.3)] to demonstrate the applicability of the method to large data sets. The dis-
cretization of the pseudotime interval into m parts was chosen to be m = 103 for A4 and
only m = 10 for A2, see in particular Fig. 5.4, which illustrates the dependence of the
probing result on m.

2See, for instance, the method described at http://docs.scipy.org/doc/numpy/reference/generated/
numpy.linalg.slogdet.html, which is based on LU-factorization.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.slogdet.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.slogdet.html
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Figure 5.2.: The integrand of Eq. 5.8 (right panel) and ∆(x) (left panel) for explicit and implicit
representations of A4.

5.2.3. Discussion

The exact numerical values of the determinant calculation using explicit and implicit rep-
resentations of A4 and A2 can be found in Table 5.1. The results of the probing method
(implicit) compared to the correct and the explicit method, where Eq. (5.8) can be eval-
uated without using a conjugate gradient or probing techniques, are accurate for both
matrices. It is remarkable that despite using a relatively small sample size of M = 8 the
absolute errors remain relatively small. The reason for this is that the pseudotime integra-
tion over all probed integrands averages the probing error. This is of particular importance
when applying the log-determinant probing to large data sets, where a large sampling size
should be avoided to save computational time. These errors can be decreased further, of
course, by an increase of the sampling size and a refinement of the numerical integration.
The results of the trace (integrand) probing and the determinant’s convergence behavior

as well as their respective errors with respect to the explicit representation can be found in
Figs. 5.2 and 5.3. Note that the scaling of the ordinate is logarithmic. For both matrices,
but especially for A4, the largest contribution to the integral of Eq. (5.8) comes from late
t-values. Therefore, if dealing with big data sets, one could divide the integration interval
not into m equal parts but by starting with a rather coarse discretization for small t-values
and subsequently refining it for larger values, e.g., by substituting dt by d ln(t′) and thereby
saving computational costs. This, however, might depend on the particular shape of the
matrix and has to be studied case by case.
The dependency of the numerical value of the determinant of A4 on the discretization

(in m equal parts) of the integration interval can be found in Fig. 5.4 and shows that even
a small value of m adds significant corrections to the result. The result for m ∝ O(10)
is, for instance, better than just using the determinant of the diagonal, ∆(0). This might
be used in practice to investigate cheaply whether the nondiagonal structure of a matrix
influences the determinant significantly.
A huge advantage of the probing method discussed here is the possibility to parallelize the

numerical calculation almost completely. To be precise, the diagonal probing beforehand,
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Figure 5.3.: The integrand of Eq. 5.8 (right panel) and ∆(x) (left panel) for explicit and implicit
representations of A2 with only m = 10 steps in pseudotime.

the pseudotime integral, as well as every single trace probing can be parallelized fully. The
only operation that cannot be parallelized is the conjugate gradient method as it is a
potential minimizer, using at least the previous step to calculate the next one.
The determination of a suitable choice of the involved parameters m and M as well

as the precision parameters for the used conjugate gradient approach and numerical
integration method depend highly on the matrix to be studied. The computational costs
and precision of the introduced determinant calculation thus depend on the combination
of the chosen methods for diagonal and trace probing, numerical integration, the method
to numerically invert the matrix D + tN , and the matrix A itself. Since it is therefore
not possible to make general statements we consciously avoid here such a discussion of
computational costs and precision with respect to m and M . A more pragmatic way to
estimate these parameters would be to downscale the problem of interest until the matrix
of interest fits into the memory of the computer and to subsequently perform mock tests
to obtain a suitable choice for the parameters discussed above. Afterwards these values
can be extrapolated to the size of the real problem.

5.3. Applications in science

Within this section we present a selection of possible applications in science. Although there
are a vast number of research fields and topics which might benefit from the stochastic
estimation of a log-determinant we focus henceforth on a selection of usages in Bayesian
signal inference, in particular in physics and only present simple examples. Exact, more
complicated examples can be found in the cited works within this section.

5.3.1. Evidence calculations & model selection

The Bayesian evidence P(d) is a measure for the quality of the model and hence for all
assumed model parameters for the data d [119]. To keep it short and simple we assume
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Figure 5.4.: Dependency of the determinant’s result on the discretization of the integration
interval into m parts, using A4.

a model that describes a linear measurement of a Gaussian signal s with additive, signal-
independent, Gaussian noise n, i.e.,

d = Rs+ n, (5.12)

where R represents a linear operator. A Gaussian distribution of a variable x is defined by

P(x) = G(x,X) ≡ 1√
|2πX|

exp

{
−1

2
x†X−1x

}
(5.13)

with related covariance matrix X and mean

〈x〉P(x) ≡
∫
Dx x P(x). (5.14)∫

D[·] denotes a phase space integral and | · | the determinant. Under these circumstances
the evidence can be calculated as

P(d) =

∫
Ds
∫
Dn P(d, s, n)

=

∫
Ds
∫
Dn δ(d−Rs− n)P(n|s)P(s)

=

√
|2πCs|d|

|2πCs||2πCn|
exp

{
−1

2

(
d†C−1

n d− j†Cs|dj
)}

,

(5.15)

with
j = R†C−1

n d,

C−1
s|d = R†C−1

n R+ C−1
s ,

(5.16)

and the signal and noise covariances Cs and Cn, respectively. Therefore, to calculate the
Bayesian model evidence, one often3 has to calculate determinants of covariance matri-
3By the word “often” we refer to cases, in which at least one marginalization [see Eq. (5.17)] can be
performed analytically (approximated with high precision) to obtain a model-dependent determinant.
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ces. This might be done by probing [Eq. (5.8)] if dealing with implicit matrices [last
line of Eq. (5.15)] instead of performing the multidimensional integral [second last line in
Eq. (5.15)] numerically. The latter has been done, for instance, in the field of inflationary
cosmology [38, 120] by the method of nested sampling [121, 122].
This is especially of importance in the field of model selection or comparison [119],

where from an observation – the data – one wants to infer which theory reproduces the
observation best. Switching from one model to another means, for instance4, to exchange R
in Eq. (5.15), which directly affects the determinant containing Cs|d. Thus, the calculation
of the determinant is mandatory here.

5.3.2. Posterior distribution including marginalizations

In the field of signal inference one is typically interested in reconstructing a set of i param-
eters pi with uncertainty from some observation, the data d. This information is delivered
by the posterior, given by5 [26] P(pi|d) ∝ P(d|pi)P(pi). Often, however, this inference
problem is degenerate, caused by a so-called nuisance parameter. For example, consider
the calibration of an instrument is of interest and not the signal. In this case the signal s
represents the nuisance parameter. The common procedure to circumvent this problem is
to marginalize over these parameters,

P(pi|d) ∝
∫
Ds
∫
Dn P(d, s, n|pi)P(pi). (5.17)

To continue with the simple example of Sec. 5.3.1 we assume again Gaussian distributions
for s and n and a linear measurement but with explicit dependency on pi, i.e., d = (Rs)[pi]+
n. If we further follow the example of calibration, the parameter pi might be a calibration
coefficient, thus affecting only R. This yields (Rs)[pi] = R[pi]s and therefore

P(pi|d) ∝
{∫
Ds G

(
d−R[pi]s, Cn

)
G(s, Cs)

}
P(pi). (5.18)

This integration can be performed analytically, producing an in general non-Gaussian prob-
ability distribution with pi-dependent normalization (and exponent) similar to Eq. (5.15),

P(pi|d) ∝
√∣∣2πCs|d[pi]∣∣ P(pi) exp

{
1

2
j†[pi]Cs|d[p

i]j[pi]

}
(5.19)

with Cs|d[pi] and j[pi] now containing R[pi] instead of R. In case the covariance matrices
or R[pi] are only given by a computer routine (implicit representation of a matrix) one
could use Eq. (5.8) to probe the determinant.
A variety of scientific fields are affected by this problem. For example, the extraction

of the level of non-Gaussianity of the cosmic microwave background [31, 53] in cosmology,
the problem of self-calibration [22, 28, 123] in general, or lensing in astronomy [124].

5.3.3. Realistic astronomical example

In order to study a more realistic example we consider a measurement device with spatially
constant but unknown calibration amplitude, parametrized by 1+γ ∈ R, scanning a specific
4We focus here on R for simplicity only. One could also, additionally, exchange the prior covariances Cn
and Cs, the assumed prior statistics, the parametrization of the data, and so on.

5Note that in this case the evidence is just a scalar which normalizes the posterior, therefore we merely
state proportionalities.
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Figure 5.5.: Logarithmic posterior of the calibration amplitude parameter γ using implicit and
explicit representations of the involved operators, see Eq. (5.21) and Eq. (5.22) for details. The
abbreviation ∆ denotes the logarithm of the term given by Eq. (5.22).

patch of the sky. The measured and assumed to be Gaussian sky signal s is affected by
the instrument via a convolution C with a Gaussian kernel of standard deviation σ = 0.05.
Additionally, the observation might be disturbed by fore- and backgrounds. For this reason
we include an observational mask Mo, which cuts out 20% of the sky. The noise n is
still assumed to be Gaussian and uncorrelated with the signal. Hence, the measurement
equation is given by

d = R [γ] s+ n = (1 + γ)MoCs+ n. (5.20)

To calibrate the measurement device the calibration posterior P(γ|d) has to be determined.
The resulting calibration mean 〈γ〉P(γ|d) can be regarded as an external calibration if the a
priori knowledge on the signal is sufficiently strong. Otherwise one could infer the signal
and calibration amplitude γ simultaneously from data using iterative approaches [123].
Using Eq. (5.19) as well as a flat prior on γ we obtain

lnP(γ|d) = −1

2
ln
∣∣∣C−1

s|d [γ]
∣∣∣+

1

2
j† [γ]Cs|d [γ] j [γ] + const., (5.21)

which exhibits in particular the γ-dependent determinant∣∣∣C−1
s|d [γ]

∣∣∣ =
∣∣∣(1 + γ) C†M †oC−1

n MoC(1 + γ) + C−1
s

∣∣∣ . (5.22)

For the numerical evaluation of Eq. (5.21) we use the settings of Sec. 5.2.2 with Cs(k, k′) =
(1 + k)−3 δkk′ , a calibration amplitude parameter of γ = 2, and a noise covariance of
(Cn)x,x′ = 10−1δxx′ to generate a data realization. The pseudotime interval has been
discretized into 102 parts. The numerically determined calibration posterior for a given
data realization can be found in Fig. 5.5, which demonstrates again the efficiency of the
stochastic method using only eight probes for a single trace probing operation. The figure
also illustrates the impact of the determinant on the log-posterior, which would not peak
in the shown interval without it.
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5.4. Summary

Motivated by the problem of finding a way to efficiently determine the determinant of
an implicitly defined matrix or operator, we derived a formula, Eq. (5.8), representing
a stochastic estimate of its log-determinant. This has been achieved by reformulating
the log-determinant as an integral representation and transforming the involved terms
into stochastic expressions, which includes a numerical integration and a trace probing.
Numerical examples have shown that the discretization of the integration interval may
be very coarse in case the probed operator is sufficiently diagonal. In case it exhibits a
significant nondiagonal structure one has to fine-grain the discretization of this interval.
The number of probes necessary for the trace probing, however, remains very low in the
studied examples. These facts combined with the almost complete parallelizability of this
approach might keep the computational costs within reasonable limits in many situations.
This method clearly has more general applications but might in particular be useful for

Bayesian signal inference and model comparison when dealing with large data sets as often
given, for instance, in astronomy and cosmology. To be precise, it might be beneficial in
all fields where the numerical calculation of a determinant of an operator is mandatory.





6. Conclusion

6.1. Summary

This thesis bridges cosmology and information theory. For studying the early Universe
we have developed a method to reconstruct inflationary model parameters by detecting
deviations from primordial Gaussianiy and reconstructed the primordial scalar potential
including uncertainty from CMB data. In order to advance the mathematical tools of infor-
mation retrieval, needed for our cosmological but also for other studies, we have developed
further the theory of self-calibration and have presented a novel technique to sample a
determinant of an implicitly defined matrix.
The first part of this thesis deals with the advancement of the theory of self-calibration,

since it involves a detailed introduction to information field theory. Based on the latter
we developed the Calibration-Uncertainty Renormalized Estimator (CURE), to infer a
signal and its unknown calibration from the same data. For this purpose we assumed the
signal and calibration covariance structure to be known and successively included more
and more portions of calibration uncertainty into the signal inference equations. The
final inference equations for the renormalized signal and calibration, which are coupled
differential equations, absorbed these uncertainty corrections. CURE is able to keep up
in accuracy, but not yet in performance, with the best self-calibration methods currently
available.
In the following, we introduced a novel approach to reconstruct inflationary model pa-

rameters by exploiting higher-order statistics of the curvature perturbations. This recon-
struction has been achieved by a saddle-point approximation of the posterior probability.
In this approximative way we preserved the analyticity of the problem as far as possible
and therefore circumvented expensive sampling techniques. Furthermore, we described
how to infer the primordial power spectrum from the curvature perturbations.
Subsequently, a successful reconstruction of the primordial scalar potential has been

presented. The development of a method that splits this large inverse problem of the
reconstruction into many, each of them solved by a Wiener filter, enabled us to infer the
primordial scalar potential in the vicinity of the last scattering surface. This method has
been applied to the CMB data of the WMAP satellite and has led to a couple of future
research opportunities, see Sec. 6.2.
Finally, we developed a method to sample the determinant of an implicitly defined

matrix. This sampling method requires relatively few probes, is based on an integral
representation of the log-determinant of a matrix, and can be used, e.g., in the field of
Bayesian model comparison or posterior calculations.
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6.2. Outlook

The respective inference methods presented in this thesis enable subsequent research pos-
sibilities, which are listed in the following:

• Calibration-uncertainty renormalized estimator. Having developed the basic
methodology of the CURE, the next logical step should be its preparation for realistic
measurement situations. This would require the usage of a sparse representation
of the occurring tensors of higher order, since these tensors are computationally
expensive to handle. As a consequence CURE could be applied to larger data sets.
Finally one could try to extend the CURE-method to non-Gaussian signals, e.g.,
log-normal fields. The latter development would be especially interesting for the
ground-based radio astronomy, where sky intensity can be modeled as a log-normal
field and where a reliable self-calibration is needed (due to, e.g., effects of the Earth’s
atmosphere).

• Inference of inflation models by non-Gaussianity. The introduction of the
posterior for inflationary parameters, mapping constraints on non-Gaussianity onto
constraints on inflation, has been done in a generic manner. It would be straightfor-
ward to extend the approach to many other inflationary models that have not been
ruled out yet by observational data. Unfortunately, as it turned out, the level of
local non-Gaussianity of the primordial curvature perturbations is tiny. Therefore
the real application of the developed method to CMB data seems to be unnecessarily
complex in comparison with other approximative approaches like the KSW estimator
[52]. A further development for the application to large-scale structure observations
might be promising, though.

• Primordial scalar potential and power spectrum. The next logical step is
the reconstruction of the primordial scalar potential and its power spectrum from
Planck data including polarization whilst taking into account all frequency bands.
This should be done by using the critical filter formula, Eq. (4.18), for the reasons
already pointed out in Sec. 4.2.3. Afterwards, there are a couple of possible directions
for future research, e.g.,

– cross-checks with reconstructions of the initial conditions from large-scale struc-
ture (see, e.g., Ref. [94]),

– inference of inflation or reheating parameters,

– symmetry/morphology investigations,

– cross-correlation with other results, e.g., the CMB lensing potential,

– inference of primordial magnetic fields generated during inflation/reheating [95],

– etc.

Furthermore, there are several routes in which the method can be improved further.
One could think of incorporating the delensing operator into the response operation,
the possibility of incorporating the isocurvature modes, or to infer the primordial
scalar potential directly from time-ordered data. The latter could be done, for in-
stance, by using a modified version of the already existing deconvolution code Art-
Deco [125].



6.2. Outlook 87

Reconstruction of the 
initial conditions at the 
last scattering surface 

Initial conditions  deep 
inside the radiation 

epoch 

Deconvolution with linear 
transfer functions 

Large-scale magnetic 
fields from (second order) 

density perturbations 
Solving evolution equation of 
magnetic fields generated by 

the Harrison mechanism 

𝑧 
103 106 3400 

Radiation-matter equality 

0 

CMB/ 
LSS 

Bayesian inference 

Largest magnetic 
field structures  

Evolution 
 

Code 

Figure 6.1.: Sketch of a method to calculate the primordial magnetic field generated by the
Harrison mechanism.

• Large-scale magnetic fields from cosmological initial conditions. The in-
ferred primordial scalar potential can also be used to calculate the minimal amount
of large-scale magnetic fields generated mainly during the radiation dominated epoch
by the so-called Harrison mechanism [126].

The Harrison mechanism, summarized in Ref. [96], describes the production of mag-
netic fields in rotating regions (i.e. second order cosmological perturbation theory;
angular velocity ω) within the expanding Universe. It considers the period in radia-
tion domination, where the constituents1 of the Universe, i.e. protons p, electrons e,
and photons γ are tightly coupled by Thompson and Coulomb scattering as well as
interactions via lepton-pair production [96]. During this period the Universe can be
described by a single fluid. As the Universe expanded and cooled down the strength
of Coulomb scattering was not able to keep up with the one of Thomson scattering.
Therefore the angular velocity of the fluid within rotating regions splits up into ωp
and ωe with ωp < ωe. During the expansion of the Universe (scale factor a) the an-
gular velocities of the components scale with ωp ∝ 1/a2 and ωe ∝ 1/a, respectively.
The relative motion between these two rotating components produced non-vanishing
currents and thus magnetic fields. This process, however, ended when electrons
and protons combined to neutral hydrogen and photons decoupled. A mathematical
description of the magnetic field generation using a simplified version2 (mainly ne-
glecting the anisotropic stress tensor) of this process can be found in Ref. [96] and

1We neglect here, for simplicity only, interactions with further components of the Universe like neutrinos,
dark matter particles, etc.

2For a strict derivation of the magnetic fields produced by the Harrison mechanism see Ref. [127].
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yields the spatial (~x) and redshift (z) dependent magnetic field

~B(~x, τ) = −mp(1 + z)

eH

(
∇Φ′ ×∇Φ− 1

12H
∇Φ×∇(∆Φ)− 1

12H2
∇Φ′ ×∇(∆Φ)

)
,

(6.1)
with H the Hubble constant in conformal time τ . The primordial scalar potential
Φ and its derivative with respect to conformal time, denoted by apostrophe (′), are
defined by

Φ(~k, τ) =
3j1(kτ/

√
3)

kτ/
√

3
Φ0(~k), (6.2)

where the function j1(·) denotes the spherical bessel function of the first kind. The
initial Φ0(~k) represents the primordial scalar potential at an early point in the radia-
tion epoch, where all relevant scales are well outside the horizon. It can be calculated
from a given reconstruction of the primordial scalar potential or matter density con-
trast at the surface of last scattering. Applying Eq. (6.1) subsequently yields the
early-time large-scale magnetic fields, whose late-time evolution (between the last
scattering and today) might be simulated in the following. The logical steps are
illustrated in Fig. 6.1.

The implementation of this research has already started. However, due to the cu-
mulative nature of this thesis, which requires accepted reviewed publications as its
basis, it is excluded from its content.
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Note: This appendix has been published in Phys. Rev. E 91, 013311 (2015) [22].

A.1. Feynman rules

The Feynman rules originally stated in and inherited from Ref. [25] read as follows:

1. Open ends of lines in diagrams correspond to external coordinates and are labeled
by such. Since the partition sum in particular does not depend on any external co-
ordinate, it is calculated only from summing up closed diagrams. However, the field
expectation value m(x) = 〈s(x)〉(s|d) = δ ln[Z(d, J)]/δJ(x)|J=0 and higher order cor-
relation functions depend on coordinates and therefore are calculated from diagrams
with one or more open ends, respectively.

2. A line with coordinates x′ and y′ at its end represents the propagatorDx′y′ connecting
these locations.

3. Vertices with one leg get an individual internal, integrated coordinate x′ and represent
the term jx′ + Jx′ − Λ

(1)
x′ .

4. Vertices with n legs represent the term −Λ
(n)
x′1...x

′
n
, where each individual leg is labeled

by one of the internal coordinates x′1 . . . x′n. This more complex vertex-structure, as
compared to QFT, is a consequence of non-locality in IFT.

5. All internal (and therefore repeatedly occurring) coordinates are integrated over,
whereas external coordinates are not.

6. Every diagram is divided by its symmetry factor, the number of permutations of
vertex legs leaving the topology invariant, as described in any book on field theory.

A.2. Renormalization flow equations including absolute
calibration measurements

This section derives the generalization of the renormalization flow equations in presence
of absolute calibration measurements. These measurements can be included in the prior
knowledge of the calibration coefficients, P(γ) = G(γ −mγ , D

γ), with (mγ)a the Wiener
filter solution for γ with uncertainty Dγ using the absolute calibration measurements only.
Hence, the likelihood becomes

P(d|s) =

∫
Dγ P(d|s, γ)G(γ −mγ , D

γ) = G

(
d− Řs,N +

∑
ab

Dγ
abR

ass†Rb
†
)
,

Ř ≡ R0 +
∑
a

(mγ)aR
a.

(A.1)
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Compared to the result without measurements of absolute calibration, Eq. (2.23), the re-
sponse R and the calibration covariance have been replaced by Ř and Dγ , respectively.
This means the response became modified by new, additional, information from the abso-
lute calibration measurements and associated the uncertainty Dγ , which is not diagonal
anymore. The resulting reference field expansion of the Hamiltonian, Eq. (2.34), yields the
following assignments:

Ď =
(
S−1 + Ř†N−1Ř

)−1
, ǰ = Ř†N−1d, m̌ = Ďǰ, Mˇx ≡ Ř†N−1Rx,

Λ(1)φ =
1

δt

(
m̌†Ď−1 − ǰ†

)
︸ ︷︷ ︸

=0

φ+
∑
ab

Dγ
ab

{
m̌†Mabφ− 1

2
ja†
(
φm̌† + m̌φ†

)
jb

− 1

2
m̌†Mˇa

(
φm̌† + m̌φ†

)
M bˇm̌− 1

2
m̌†Mˇam̌m̌†M bˇφ+ ja†m̌m̌†M bˇφ

+
1

2
ja†
(
φm̌† + m̌φ†

)
M bˇm̌+

1

2
m̌†Mˇa

(
φm̌† + m̌φ†

)
jb
}
,

Λ(2)[φ, φ] =
1

2

∑
ab

Dγ
ab

{
φ†Mabφ− ja†φφ†jb − φ†Mˇam̌m̌†M bˇφ− m̌†Mˇaφφ†M bˇm̌

− φ†Mˇa
(
φm̌† + m̌φ†

)
M bˇm̌− m̌†Mˇa

(
φm̌† + m̌φ†

)
M bˇφ

+ ja†
(
φm̌† + m̌φ†

)
M bˇφ+ φ†Mˇa

(
φm̌† + m̌φ†

)
jb + ja†φφ†M bˇm̌

+ m̌†Mˇaφφ†jb
}

+ 1 perm.,

Λ(3)[φ, φ, φ] = −
∑
ab

Dγ
ab

{
1

2
φ†Mˇa

(
φm̌† + m̌φ†

)
M bˇφ+

1

2
m̌†Mˇaφφ†M bˇφ

+
1

2
φ†Mˇaφφ†M bˇm̌− 1

2
ja†φφ†M bˇφ− 1

2
φ†Mˇaφφ†jb

}
+ 5 perm.,

Λ(4)[φ, φ, φ, φ] = − 1

2

∑
ab

Dγ
abφ
†Mˇaφφ†M bˇφ+ 23 perm..

(A.2)
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Note: This appendix has been published in JCAP 6, 048 (2014) [31].

B.1. Shape of posterior and estimator of inflationary
parameters p

In general, the posterior distribution for p does not have to be Gaussian. If so, one should
be very careful if one compares the posterior pdf for p with an estimator pdf, P (p̂), because
they can exhibit different types of deviations from Gaussianity. This means in particular
that in some cases an unbiased constructed estimator might exhibit a skewness behavior
different from the posteriors one. For instance, compare the posterior pdf in Ref. [53] with
the estimator pdf in Ref. [48], where the pdf is negatively skewed in one case and positively
in another. The reason for this apparent contradiction is illustrated in Fig. B.1, where the
joint probability of p and d is shown. To determine the posterior pdf we consider a varying
p given d, which is a one-dimensional hypersurface, parallel to the horizontal axis. If one
wants to obtain the pdf for the estimator, one has to vary d given p corresponding to a
one-dimensional hypersurface parallel to the vertical axis. If the probability distribution is
symmetric, e.g. Gaussian, the shapes of estimator pdf and posterior pdf coincide. However,
if the distribution is asymmetric the shapes do not have to coincide as sketched in Fig. B.1
for a one-dimensional parameter p. In turn, this means that the shapes of posterior and the
distribution of an estimator of a quantity do not have to exhibit the same skewness. Hence
there is no real contradiction. A discussion about other advantages and disadvantages of
the usage of posterior distributions can be found, e.g., in Ref. [54].

B.2. Dependency of the scalar amplitude and spectral index
on fNL under usage of the critical filter

In Sec. 3.5.3 a relation between the scalar amplitudeAs (spectral index ns) of the primordial
power spectrum and the non-Gaussianity parameter fNL was mentioned, if one uses the
critical filter with or without smoothness prior to reconstruct the power spectrum from a
field that is (in some cases) falsely assumed to be Gaussian. In turn, that means by applying
these filter formulae, Eqs. (3.55) and (3.58), one could infer the level of non-Gaussianity
of a field.
Within Sec. 3.5.3 we did this calculation for the curvaton scenario. However, we can

transform the dependency of As, ns on κ into a dependency on fNL by neglecting contribu-
tions of the trispectrum. Solving Eq. (3.30) for κ and substituting it within the quadratic
and linear fitting formula, pointed out in Sec. 3.5.3, yields
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P ( p , d )

p

d

P ( p∣d )

P ( p̂)

Figure B.1.: Sketch of posterior (blue) and estimator (red) pdf with different skewness behaviors
drawn from an asymmetric joint probability (black).

109As(fNL) =
aq
125

(
10 + 6fNL +

√
2
√

18f2
NL + 60fNL + 125

)2

+
bq
15

(
10 + 6fNL +

√
2
√

18f2
NL + 60fNL + 125

)
+ cq,

(B.1)

and
ns(fNL)− 1 =

al

15

(
10 + 6fNL +

√
2
√

18f2
NL + 60fNL + 125

)
+ bl, (B.2)

for
fNL ≥ −

5

4
, (B.3)

with aq, bq, cq, al, bl fitting parameters (see Sec. 3.5.3) that might depend on the number
of pixels used. Note that relations between the spectral index and the scalar amplitude
of the primordial power spectrum can also be derived for other inflation models, e.g., the
modulated Higgs inflation scenario of Sec. 3.3.2.
Analogously one could solve the linear fitting formula of the spectral index for κ and

substitute the latter within the quadratic fitting formula to derive a relation between As
and ns. This yields

109As(ns) =
aq
a2

l

(ns − 1− bl)2 +
bq
al

(ns − 1− bl) + cq, (B.4)

whereby we have not neglected the contributions of the trispectrum.
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Note: This appendix has been published in JCAP 2, 041 (2015) [93].

C.1. Response projected onto the sphere of LSS

The data is given by

d`m ≡ M `m
`′m′

aCMB
`′m′ + n`m = (RΦ)`m + n`m

= M `m
`′m′

B`′
2

π

∫
dk k2

∫
dr r2Φ`′m′(r)g

T
`′ (k)j`′(kr) + n`m.

(C.1)

Considering Gaussian statistics for the primordial curvature perturbations, Φ, the response
is defined by

R ≡
〈
dΦ†

〉
(Φ,d)

〈
ΦΦ†

〉−1

(Φ,d)
. (C.2)

Instead of using the full three-dimensional response R, we introduce a two-dimensional
response, R(2), which acts on the primordial potential projected onto the last scattering
surface (LSS), Φ(2) ≡ Φ (r = rLSS) = T̃Φ, where T̃ denotes the projection operator:

R(2) =
〈
RΦ(T̃Φ)†

〉
(Φ,d)

〈
T̃Φ(T̃Φ)†

〉−1

(Φ,d)
=
(
RPΦT̃ †

)(
T̃PΦT̃ †

)−1
. (C.3)

To derive the denominator at the distance of the LSS, we first transform it into position-
space, (

T̃PΦT̃ †
)
n̂,n̂′

=

∫
d3x

∫
d3yδ (x− rLSSn̂) δ

(
y − rLSSn̂′

)
×
∫

d3k

(2π)3

∫
d3q

(2π)3
(2π)3δ(k− q)PΦ(k)e−ik·xeiq·y

=

∫
d3k

(2π)3
PΦ(k)e−irLSSk·n̂eirLSSk·n̂

′
.

(C.4)

Vectors are printed in bold for reasons of clarity and comprehensibility; unit vectors are
denoted by .̂ Subsequently we use the Rayleigh expansion,

eik·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(kr)Y
m∗
` (k̂)Y m

` (r̂), (C.5)

as well as the transformation rules

f`m ≡
∮
dn̂ Y m∗

` (n̂)f(n̂),

f(n̂) =

∞∑
`=0

∑̀
m=−`

f`mY
m
` (n̂),

and
∮
dn̂ Y m

` (n̂)Y m′∗
`′ (n̂) = δ``′δmm′ ,

(C.6)
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to obtain the final corresponding expression in the spherical harmonic space,(
T̃PΦT̃ †

)
`m
`′m′

=

∮
dn̂

∮
dn̂′ Y m

` (n̂)Y m′∗
`′ (n̂′)

∫
d3k

(2π)3
PΦ(k)

×
∑
`′′`′′′
m′′m′′′

(4π)2i`
′′′−`′′j`′′(krLSS)j`′′′(krLSS)

× Y m′′
`′′ (k̂)Y m′′′∗

`′′′ (k̂)Y m′′∗
`′′ (n̂)Y m′′′

`′′′ (n̂′)

=
2

π

∫
dk k2

∮
dk̂ PΦ(k)i`

′−`j`(krLSS)j`′(krLSS)Y m′∗
`′ (k̂)Y m

` (k̂)

=
2

π

∫
dk k2PΦ(k)j2

` (krLSS)δ``′δmm′ ≡ PΦ
` δ``′δmm′ .

(C.7)

PΦ
` denotes the primordial power spectrum projected onto the sphere of LSS.
To determine the numerator we fist have to transform PΦT̃ † into the basis of spherical

harmonics. Analogous to the calculation above we obtain(
PΦT̃ †

)
`m
`′m′

(r) =
2

π

∫
dk k2PΦ(k)j`(krLSS)j`(kr)δ``′δmm′ , (C.8)

and thus(
RPΦT̃ †

)
`m
`′m′

= M `m
`′′m′′

B`′′
2

π

×
∫
dk k2

∫
dr r2

{
2

π

∫
dk′k′2PΦ(k′)j`′′(k

′rLSS)j`′′(k
′r)

}
× gT`′′(k)j`′′(kr)δ`′′`′δm′′m′ .

(C.9)

Using the identity ∫ ∞
0

dr r2j`(kr)j`(k
′r) =

π

2

1

k2
δ(k − k′) (C.10)

finally yields(
RPΦT̃ †

)
`m
`′m′

= M `m
`′′m′′

B`′′
2

π

∫
dk k2PΦ(k)j`′′(krLSS)gT`′′(k)δ`′′`′δm′′m′ . (C.11)

Putting the results together, the two-dimensional response is given by

R
(2)
`m
`′m′

= M `m
`′′m′′

B`′′

∫
dk k2PΦ(k)j`′′(krLSS)gT`′′(k)∫

dk k2PΦ(k)j2
`′′(krLSS)

δ`′′`′δm′′m′ . (C.12)

The response for arbitrary comoving distances r′ can be obtained by replacing rLSS by r′.

C.2. Wiener filter formula and uncertainty estimate in data
space

The Wiener filter in data space is defined by

m(2)
w ≡

〈
Φ(2)

〉
(Φ|d)

= T̃ 〈Φ〉(Φ|d) = T̃
〈

Φd†
〉

(Φ,n)

〈
dd†
〉−1

(Φ,n)
d

= T̃PΦR†
[
RPΦR† +N

]−1
d = T̃PΦR†

[
C̃TT +N

]−1
d

Eq. (C.12)
= PΦ

` R
(2)†
[
C̃TT +N

]−1
d.

(C.13)
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Formally, the corresponding posterior covariance matrix is constructed as

D = PΦ
` − PΦ

` R
(2)†
(
C̃TT +N

)−1
R(2)PΦ

` . (C.14)

The square root of its position space diagonal would give us the 1σ uncertainty map.
However, as the operator is not directly accessible to us, but is only defined as a sequence
of linear functions, calculating the diagonal requires very expensive probing routines which
need to evaluate the covariance matrix several thousand times before converging.
However, the covariance matrix becomes diagonal in spherical harmonic space under two

conditions1: We assume that there is no masking in the data and the noise covariance N is
a multiple of the identity. The noise covariance matrix for TT data is already diagonal and
dominated by white uncorrelated noise. So this approximation seems appropriate given the
benefits in computational costs. The assumption that there is no masking is more drastic
of course. We therefore construct our uncertainty map out of the limiting cases of having
no masking and masking the whole sky. Both scenarios make the posterior covariance
matrix diagonal in spherical harmonic space.
The constant approximation to the noise covariance is constructed as

Ñn̂n̂′ =
trN

tr1
δ(n̂− n̂′). (C.15)

The response with no mask is diagonal in spherical harmonic space,

R̃ `m
`′m′

= B`R` δ``′ δmm′ , (C.16)

and the response with an all-sky mask is zero. Therefore the covariance matrix is diagonal
in either case. Since a diagonal matrix in spherical harmonic space results in a constant
diagonal in position space, we can exploit the invariance of the trace to get the position
space diagonal of the covariance matrix,

Dn̂n̂ =
trD

4π
, (C.17)

where the trace is easily calculated in spherical harmonic space, where D is diagonal.
In a region that is fully masked and where the edges of the mask are further away than

the correlation length of Φ the uncertainty approaches the limiting case of an all-sky mask.
In a region that is fully exposed and more than a correlation length away from a masked
region the uncertainty approaches the limiting case of no mask. We therefore combine the
two cases into one map by setting the uncertainty to the “all-sky masked” value in regions
which are masked and to the “no mask” value in regions which are not masked, i.e.

σ2
n̂ =

{
Dall mask
n̂n̂ if Mn̂n̂′ = 0

Dno mask
n̂n̂ otherwise.

(C.18)

The interpolation between these two regions is dictated by the prior covariance. It describes
precisely how information is correlated between masked and unmasked regions. Our final
uncertainty map is therefore the result of a smoothing of σ with the normalized square
root of the prior covariance,

σsmooth =
1

N

√
PΦ
` σ, (C.19)

1Note that this procedure is only valid for a temperature-only analysis. Once polarization data is included
the 1σ uncertainty must be calculated by the square root of the diagonal of Eq. (C.14).
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where
N =

∮
dn̂dn̂′

(√
PΦ
`

)
n̂n̂′

δ(n̂′). (C.20)

C.3. WMAP noise characterization

The pixel noise level (in units mK) of a single map can be determined by σ = σ0/
√
Nobs,

where σ0 can be found at http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_
info.cfm and the effective number of observations Nobs, which can vary from pixel to
pixel, is stored in the FITS file of a map, see http://lambda.gsfc.nasa.gov/product/
map/dr4/skymap_file_format_info.cfm. Thus, the noise covariance matrix of a single
map is given by

Nn̂,n̂′ =
σ2

0

Nobs(n̂′)
δn̂n̂′ . (C.21)

Including polarization data, the noise covariance matrix in position space has to be
generalized by

N−1 =


NTT

obs/σ
2
T 0 0

0 NQQ
obs /σ

2
P NQU

obs /σ
2
P

0 NQU
obs /σ

2
P NUU

obs /σ
2
P

 , (C.22)

where σT,P is the respective noise level of temperature and polarization as given by WMAP.

http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm
http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm
http://lambda.gsfc.nasa.gov/product/map/dr4/skymap_file_format_info.cfm
http://lambda.gsfc.nasa.gov/product/map/dr4/skymap_file_format_info.cfm
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Note: This appendix has been published in Phys. Rev. E 92, 013302 (2015) [106].

Here Eq. (5.8) is derived. Following Sec. 5.2 the log-determinant ∆ of an operator A can
be parametrized by ∆ = ln[det(D+N)] with D being the diagonal and N the off-diagonal
part of A. Since ∆ can be Taylor-expanded for small N (spectrally compared to D) only,
we employ a method from the field of renormalization theory [22, 25]. Accordingly, we
introduce an expansion parameter δt � 1 to suppress the influence of N . In particular,
we replace ∆ by ln[det(D + δtN)] for a moment. For sufficiently small values of δt, in
the following interpreted as tiny pseudotime steps, we can approximate ∆ by Eq. (5.6).
Theoretically, a single pseudotime step could be infinitesimal small, enabling the formal
definition of the derivative

d∆(t)

dt
≡ lim
δt→0

ln[det(D + (t+ δt)N)]− ln[det(D + tN)]

δt

= lim
δt→0

1

δt
ln
[
det
(
1+ δtN [D + tN ]−1

)]
= lim
δt→0

1

δt
tr
[
ln
(
1+ δtN [D + tN ]−1

)]
= tr

[
N [D + tN ]−1

]
,

(D.1)

with the definition
∆(t) ≡ ln[det(D + tN)]. (D.2)

Integrating the pseudotime derivative of ∆(t) yields the integral representation of the log-
determinant,

∆ =

∫ 1

0
dt tr

[
N (D + tN)−1

]
+ ∆(0). (D.3)

This integral representation has also been found by Ref. [118], where its validity has been
proven for weak diagonal dominant and Hermitian positive definite matrices. In particular
one has to ensure the existence of the inverse matrix of the integrand of Eq. (D.3).
Finally, we replace the trace by stochastic trace probing and perform the pseudotime

integral by an numeric integration method. This yields

∆ =

∫ 1

0
dt
〈
ξ†N (D + tN)−1 ξ

〉
{ξ}

+ ∆(0). (D.4)
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