143 research outputs found

    Helping the Help for CD8+ T Cell Responses

    Get PDF
    Eickhoff et al. and Hor et al. use time-lapse intravital microscopy to show an unexpected choreography of CD4+ and CD8+ T cells “dancing” between different dendritic cell sub-populations during priming of cytotoxic immune responses to viruses

    FcÎł Receptors and Cross-Presentation in Dendritic Cells

    Get PDF

    Regulation of Antigen Export to the Cytosol During Cross-Presentation

    Get PDF
    Cross-priming refers to the induction of primary cytotoxic CD8+ T cell responses to antigens that are not expressed in antigen presenting cells (APCs) responsible for T cell priming. Cross-priming is achieved through cross-presentation of exogenous antigens derived from tumors, extracellular pathogens or infected neighboring cells on Major Histocompatibility Complex (MHC) class I molecules. Despite extensive research efforts to understand the intracellular pathways involved in antigen cross-presentation, certain critical steps remain elusive and controversial. Here we review recent advances on antigen cross-presentation, focusing on the mechanisms involved in antigen export to the cytosol, a crucial step of this pathway

    Inflammatory dendritic cells in mice and humans.

    Get PDF
    International audienceDendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells. Several murine DC subsets have been identified that differ in their phenotype and functional properties. In the steady state, DC precursors originating from the bone marrow give rise to lymphoid-organ-resident DCs and to migratory tissue DCs. During inflammation, an additional DC subset has been described, so-called inflammatory DCs (infDCs), which differentiate from monocytes recruited to the site of inflammation. Here, we review recent work on the development and functions of murine infDCs. We also examine the criteria that define infDCs. Finally, we discuss the characterization of human infDCs and their potential role in inflammatory diseases

    Utilisation d'un anticorps monoclonal anti-Tn en immunothérapie des cancers

    Get PDF
    La transformation des cellules normales de l organisme en un phĂ©notype malin est souvent accompagnĂ©e de changements dans leur antigĂ©nicitĂ©. L antigĂšne Tn (GalNac-O-Ser/ThrĂ©o) est un antigĂšne (Ag) glycopeptidique spĂ©cifique des tumeurs et exprimĂ© Ă  la membrane plasmique des cellules cancĂ©reuses dans la majoritĂ© des carcinomes humains ainsi que dans certaines tumeurs hĂ©matologiques, tandis qu il n est pas dĂ©tectĂ© dans les cellules normales. Il reprĂ©sente donc une cible potentielle trĂšs intĂ©ressante pour l immunothĂ©rapie passive par anticorps, car il n est pas dĂ©tectable dans les cellules normales, mais est dĂ©masquĂ© dans environ 90% des cancers Ă©pithĂ©liaux du fait d une dĂ©rĂ©gulation des processus de glycosylation. Les anticorps monoclonaux (AcM) spĂ©cifiques d antigĂšnes exprimĂ©s Ă  la membrane des cellules tumorales ont une efficacitĂ© prouvĂ©e dans le traitement de certains cancers. Ces AcM thĂ©rapeutiques sont particuliĂšrement intĂ©ressants pour le traitement des cancers du fait de leur forte spĂ©cificitĂ© pour les cellules tumorales et de leur faible toxicitĂ© pour les cellules normales, contrairement aux chimiothĂ©rapies conventionnelles, mais leur mĂ©canisme d action est encore mal connu. L AcM Chi-Tn est un anticorps chimĂ©rique homme/souris capable de se fixer de façon spĂ©cifique Ă  l antigĂšne tumoral Tn, alors qu il ne se fixe pas sur les cellules normales. Cet AcM pourrait donc ĂȘtre envisagĂ© comme agent thĂ©rapeutique dans le traitement des cancers Ă©pithĂ©liaux par immunothĂ©rapie passive.Nous nous sommes intĂ©ressĂ©s Ă  l AcM Chi-Tn non couplĂ© en vue d analyser son mĂ©canisme d action et d Ă©valuer son efficacitĂ© thĂ©rapeutique in vivo. Nous avons montrĂ© que l AcM Chi-Tn seul ne possĂšde pas d effet toxique direct sur les lignĂ©es de cellules tumorales Tn-positives in vitro. Cependant, en prĂ©sence de macrophages, cet AcM est capable d induire la lyse de ces cellules par un mĂ©canisme d ADCC. In vivo, l AcM Chi-Tn, associĂ© Ă  la cyclophosphamide, induit le rejet d'une tumeur du sein dans plus de 80% des souris. Cette inhibition de la croissance tumorale est abolie chez les souris dĂ©ficientes pour la chaine associĂ©e aux rĂ©cepteurs RFc activateurs, suggĂ©rant in vivo un mĂ©canisme d ADCC. Par l Ă©tude microscopique du microenvironnement tumoral, nous avons observĂ© que les cellules tumorales forment in vivo des synapses avec des macrophages, des neutrophiles, mais aussi des lymphocytes B. Des expĂ©riences de survie in vivo chez des souris dĂ©ficientes pour diffĂ©rentes populations cellulaires montrent que les lymphocytes T semblent nĂ©cessaires Ă  la protection des souris par Chi-Tn contre la tumeur. Ainsi, ces rĂ©sultats confirment le rĂŽle des effecteurs exprimant des RFc activateurs, mais aussi le rĂŽle indispensable de la rĂ©ponse immune adaptative pour assurer l'effet thĂ©rapeutique des AcM.Nous nous sommes Ă©galement intĂ©ressĂ©s Ă  l utilisation potentielle de l AcM Chi-Tn comme vecteur d agents cytotoxiques. In vivo, dans un modĂšle de tumeurs solides chez la souris, des expĂ©riences de biodistribution montrent que l AcM Chi-Tn est capable de cibler spĂ©cifiquement les zones tumorales, ce qui en fait un anticorps potentiellement utilisable comme vecteur de molĂ©cules toxiques. L internalisation du complexe anticorps/antigĂšne cible est un prĂ©-requis nĂ©cessaire Ă  l utilisation de l anticorps conjuguĂ©. Nous avons montrĂ© in vitro que l AcM Chi-Tn est internalisĂ© dans les endosomes prĂ©coces et de recyclage pendant un temps relativement long, faisant de cet AcM un bon candidat pour ĂȘtre couplĂ© Ă  des agents cytotoxiques. Durant ma thĂšse, nous avons couplĂ© l AcM Chi-Tn Ă  la toxine saporine ou Ă  la molĂ©cule cytotoxique auristatine F, et nous avons montrĂ© in vitro que ces conjuguĂ©s sont cytotoxiques sur des lignĂ©es cellulaires Tn-positives.Pas de rĂ©sumĂ© en anglaisPARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor

    Get PDF
    Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8+ cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration

    Isolation and characterization of exosomes from cell culture supernatants and biological fluids

    Get PDF
    Exosomes are small membrane vesicles found in cell culture supernatants and in different biological fluids. Exosomes form in a particular population of endosomes, called multivesicular bodies (MVBs), by inward budding into the lumen of the compartment. Upon fusion of MVBs with the plasma membrane, these internal vesicles are secreted. Exosomes possess a defined set of membrane and cytosolic proteins. The physiological function of exosomes is still a matter of debate, but increasing results in various experimental systems suggest their involvement in multiple biological processes. Because both cell-culture supernatants and biological fluids contain different types of lipid membranes, it is critical to perform high-quality exosome purification. This unit describes different approaches for exosome purification from various sources, and discusses methods to evaluate the purity and homogeneity of the purified exosome preparations

    Dendritic cell–derived exosomes for cancer therapy

    Get PDF
    International audienceDC-derived exosomes (Dex) are nanometer-sized membrane vesicles that are secreted by the sentinel antigen-presenting cells of the immune system: DCs. Like DCs, the molecular composition of Dex includes surface expression of functional MHC-peptide complexes, costimulatory molecules, and other components that interact with immune cells. Dex have the potential to facilitate immune cell–dependent tumor rejection and have distinct advantages over cell-based immunotherapies involving DCs. Accordingly, Dex-based phase I and II clinical trials have been conducted in advanced malignancies, showing the feasibility and safety of the approach, as well as the propensity of these nanovesicles to mediate T and NK cell–based immune responses in patients. This Review will evaluate the interactions of Dex with immune cells, their clinical progress, and the future of Dex immunotherapy for cancer
    • 

    corecore