25 research outputs found

    Pharmacokinetics of Haloperidol in Critically Ill Patients:Is There an Association with Inflammation?

    Get PDF
    Haloperidol is considered the first-line treatment for delirium in critically ill patients. However, clinical evidence of efficacy is lacking and no pharmacokinetic studies have been performed in intensive care unit (ICU) patients. The aim of this study was to establish a pharmacokinetic model to describe the PK in this population to improve insight into dosing. One hundred and thirty-nine samples from 22 patients were collected in a single-center study in adults with ICU delirium who were treated with low-dose intravenous haloperidol (3–6 mg per day). We conducted a population pharmacokinetic analysis using Nonlinear Mixed Effects Modelling (NONMEM). A one-compartment model best described the data. The mean population estimates were 51.7 L/h (IIV 42.1%) for clearance and 1490 L for the volume of distribution. The calculated half-life was around 22 h (12.3–29.73 h) for an average patient. A negative correlation between C-Reactive Protein (CRP) and haloperidol clearance was observed, where clearance decreased significantly with increasing CRP up to a CRP concentration of 100 mg/L. This is the first step towards haloperidol precision dosing in ICU patients and our results indicate a possible role of inflammation

    Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    Get PDF
    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3-16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P3.4) from 8% to 85%(P</p

    Evaluation of the pharmacokinetics of prednisolone in paediatric patients with acute lymphoblastic leukaemia treated according to Dutch Childhood Oncology Group protocols and its relation to treatment response

    Get PDF
    Glucocorticoids form the backbone of paediatric acute lymphoblastic leukaemia (ALL) treatment. Many studies have been performed on steroid resistance; however, few studies have addressed the relationship between dose, concentration and clinical response. The aim of the present study was to evaluate the pharmacokinetics of prednisolone in the treatment of paediatric ALL and the correlation with clinical parameters. A total of 1028 bound and unbound prednisolone plasma concentrations were available from 124 children (aged 0–18 years) with newly diagnosed ALL enrolled in the Dutch Childhood Oncology Group studies. A population pharmacokinetic model was developed and post hoc area under the curve (AUC) was tested against treatment outcome parameters. The pharmacokinetics of unbound prednisolone in plasma was best described with allometric scaling and saturable binding to proteins. Plasma protein binding decreased with age. The AUC of unbound prednisolone was not associated with any of the disease parameters or treatment outcomes. Unbound prednisolone plasma concentrations correlated with age. No effect of exposure on clinical treatment outcome parameters was observed and does not substantiate individualised dosing. Poor responders, high-risk and relapsed patients showed a trend towards lower exposure compared to good responders. However, the group of poor responders was small and requires further research.</p

    Acute activation of metabolic syndrome components in pediatric acute lymphoblastic leukemia patients treated with dexamethasone

    Get PDF
    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3-16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P3.4) from 8% to 85% (P<0.01). Dexamethasone treatment also significantly increased the diastolic and systolic blood pressure. Lastly, dexamethasone trough levels (N = 24) were directly correlated with high glucose levels at T2, but not with other parameters. These results indicate that dexamethasone treatment acutely induces three components of the MetS. Together with the weight gain typically associated with dexamethasone treatment, these factors may contribute to the higher prevalence of MetS and cardiovascular risk among survivors of childhood leukemia who received dexamethasone treatment

    Pramipexole effects on startle gating in rats and normal men

    Get PDF
    Dopamine D3 receptors regulate sensorimotor gating in rats, as evidenced by changes in prepulse inhibition (PPI) of startle after acute administration of D3 agonists and antagonists. In this study, we tested the effects of the D3-preferential agonist, pramipexole, on PPI in normal men and Sprague–Dawley rats. Acoustic startle and PPI were tested in clinically normal men, comparing the effects of placebo vs. 0.125 mg (n = 20) or placebo vs. 0.1875 mg (n = 20) pramipexole, in double blind, crossover designs. These measures were also tested in male Sprague–Dawley rats using a parallel design [vehicle vs. 0.1 mg/kg (n = 8), vehicle vs. 0.3 mg/kg (n = 8) or vehicle vs. 1.0 mg/kg pramipexole (n = 8)]. Autonomic and subjective measures of pramipexole effects and several personality instruments were also measured in humans. Pramipexole increased drowsiness and significantly increased PPI at 120-ms intervals in humans; the latter effect was not moderated by baseline PPI or personality scale scores. In rats, pramipexole causes a dose-dependent reduction in long-interval (120 ms) PPI, while low doses actually increased short-interval (10–20 ms) PPI. Effects of pramipexole on PPI in rats were independent of baseline PPI and changes in startle magnitude. The preferential D3 agonist pramipexole modifies PPI in humans and rats. Unlike indirect DA agonists and mixed D2/D3 agonists, pramipexole increases long-interval PPI in humans, in a manner that is independent of baseline PPI and personality measures. These findings are consistent with preclinical evidence for differences in the D2- and D3-mediated regulation of sensorimotor gating

    Pharmacokinetics and population pharmacokinetics in pediatric oncology

    No full text
    Pharmacokinetic research has become increasingly important in pediatric oncology as it can have direct clinical implications and is a crucial component in individualized medicine. Population pharmacokinetics has become a popular method especially in children, due to the potential for sparse sampling, flexible sampling times, computing of heterogeneous data, and identification of variability sources. However, population pharmacokinetic reports can be complex and difficult to interpret. The aim of this article is to provide a basic explanation of population pharmacokinetics, using clinical examples from the field of pediatric oncology, to facilitate the translation of pharmacokinetic research into the daily clinic

    Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It?

    Get PDF
    The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations
    corecore