21 research outputs found

    Some Aspects of Protozoan Infections in Immunocompromised Patients: A Review

    Full text link

    A Hydrophilic Sulfated Resveratrol Derivative for Topical Application: Sensitization and Anti-Allergic Potential

    No full text
    Resveratrol (RSV), a naturally occurring metabolite, is widely used in skincare products, but its hydrophobicity impairs its own incorporation into cosmetic formulations. RSV-GS is a synthetic hydrophilic sulfated glycosylated derivative inspired by marine natural products that present a lower cytotoxicity than RSV while exhibiting similar levels of bioactivity. Herein, we predict the skin sensitization potential of this new compound using an in vitro approach based on the OECD 442E guideline. Furthermore, the anti-allergic potential of RSV-GS was also disclosed. The monocyte THP-1 cell line was stimulated with RSV and RSV-GS in the presence or absence of the extreme skin allergen 1-fluoro-2,4-dinitrobenzene (DNFB). The results demonstrated that RSV-GS alone (500 µM) evoked a relative fluorescence index (RFI) lower than the thresholds established by the OECD guideline for CD54 (200%) and CD86 (150%), indicating the absence of a skin sensitization potential. Interestingly, in the presence of the skin allergen DNFB, RSV-GS exhibited the ability to rescue the DNFB-induced maturation of THP-1 cells, with RFI values lower than those for RSV, suggesting the potential of RSV-GS to mitigate skin sensitization evoked by allergens and, consequently, allergic contact dermatitis. These results open new avenues for the use of RSV-GS as a safe and anti-allergic active cosmetic ingredient

    Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive

    No full text
    Methylcellulose was produced from the fibers of Mangifera indica L. Ubá mango seeds. MCD and MCI methylcellulose samples were made by heterogeneous methylation, using dimethyl sulfate and iodomethane as alkylating agents, respectively. The materials produced were characterized for their thermal properties (DSC and TGA), crystallinity (XRD) and Degree of Substitution (DS) in the chemical route. The cellulose derivatives were employed as mortar additive in order to improve mortar workability and adhesion to the substrate. These properties were evaluated by means of the consistency index (CI) and bond tensile strength (TS) tests. The methylcellulose (MCD and MCI) samples had CI increased by 27.75 and 71.54% and TS increased by 23.33 and 29.78%, respectively, in comparison to the reference sample. Therefore, the polymers can be used to produce adhesive mortars
    corecore