236 research outputs found
Congestion management in traffic-light intersections via Infinitesimal Perturbation Analysis
We present a flow-control technique in traffic-light intersections, aiming at
regulating queue lengths to given reference setpoints. The technique is based
on multivariable integrators with adaptive gains, computed at each control
cycle by assessing the IPA gradients of the plant functions. Moreover, the IPA
gradients are computable on-line despite the absence of detailed models of the
traffic flows. The technique is applied to a two-intersection system where it
exhibits robustness with respect to modeling uncertainties and computing
errors, thereby permitting us to simplify the on-line computations perhaps at
the expense of accuracy while achieving the desired tracking. We compare, by
simulation, the performance of a centralized, joint two-intersection control
with distributed control of each intersection separately, and show similar
performance of the two control schemes for a range of parameters
Diagnosability of discrete event systems using labeled Petri nets
In this paper, we focus on labeled Petri nets with silent transitions that may either correspond to fault events or to regular unobservable events. We address the problem of deriving a procedure to determine if a given net system is diagnosable, i.e., the occurrence of a fault event may be detected for sure after a finite observation. The proposed procedure is based on our previous results on the diagnosis of discrete-event systems modeled with labeled Petri nets, whose key notions are those of basis markings and minimal explanations, and is inspired by the diagnosability approach for finite state automata proposed by Sampath in 1995. In particular, we first give necessary and sufficient conditions for diagnosability. Then, we present a method to test diagnosability that is based on the analysis of two graphs that depend on the structure of the net, including the faults model, and the initial marking
Firing rate optimization of cyclic timed event graphs by token allocations
In this paper, we deal with the problem of allocating a given number of tokens in a cyclic timed event graph (CTEG) so as to maximize the firing rate of the net. We propose three different approaches. The first one is a "greedy" incremental procedure that is computationally very efficient. The only drawback is that the convergence to the optimum is guaranteed only when the set of places where tokens can be allocated satisfies given constraints. The other two procedures involve the solution of a mixed integer linear programming problem. The first one needs the knowledge of the elementary circuits, thus it is convenient only for those classes of CTEG whose number of elementary circuits is roughly equal to the number of places, such as some kanban-systems. On the contrary, the second one enables one to overcome this difficulty, thus providing an efficient tool for the solution of allocation problems in complex manufacturing systems like job-shop systems
Consensus in multi-agent systems with second-order dynamics and non-periodic sampled-data exchange
In this paper consensus in second-order multi-agent systems with a
non-periodic sampled-data exchange among agents is investigated. The sampling
is random with bounded inter-sampling intervals. It is assumed that each agent
has exact knowledge of its own state at all times. The considered local
interaction rule is PD-type. The characterization of the convergence properties
exploits a Lyapunov-Krasovskii functional method, sufficient conditions for
stability of the consensus protocol to a time-invariant value are derived.
Numerical simulations are presented to corroborate the theoretical results.Comment: The 19th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA'2014), Barcelona (Spain
Consensus in multi-agent systems with non-periodic sampled-data exchange and uncertain network topology
In this paper consensus in second-order multi-agent systems with a
non-periodic sampled-data exchange among agents is investigated. The sampling
is random with bounded inter-sampling intervals. It is assumed that each agent
has exact knowledge of its own state at any time instant. The considered local
interaction rule is PD-type. Sufficient conditions for stability of the
consensus protocol to a time-invariant value are derived based on LMIs. Such
conditions only require the knowledge of the connectivity of the graph modeling
the network topology. Numerical simulations are presented to corroborate the
theoretical results.Comment: arXiv admin note: substantial text overlap with arXiv:1407.300
Fault detection for discrete event systems using Petri nets with unobservable transitions
In this paper we present a fault detection approach for discrete event systems using Petri nets. We assume that some of the transitions of the net are unobservable, including all those transitions that model faulty behaviors. Our diagnosis approach is based on the notions of basis marking and justification, that allow us to characterize the set of markings that are consistent with the actual observation, and the set of unobservable transitions whose firing enable it. This approach applies to all net systems whose unobservable subnet is acyclic. If the net system is also bounded the proposed approach may be significantly simplified by moving the most burdensome part of the procedure off-line, thanks to the construction of a graph, called the basis reachability graph
- …