34 research outputs found

    High-speed laser anemometry based on spectrally resolved Rayleigh scattering

    Get PDF
    Laser anemometry in unseeded flows based on the measurement of the spectrum of Rayleigh scattered laser light is reviewed. The use of molecular scattering avoids the well known problems (particle lag, biasing effects, seed generation, seed injection) of seeded flows. The fundamental limits on velocity measurement accuracy are determined using maximum likelihood methods. Measurement of the Rayleigh spectrum with scanning Fabry-Perot interferometers is analyzed and accuracy limits are established for both single pass and multipass configurations. Multipass configurations have much higher selectivity and are needed for measurements where there is a large amount of excess noise caused by stray laser light. It is shown that Rayleigh scattering is particularly useful for supersonic and hypersonic flows. The results of the analysis are compared with measurements obtained with a Rayleigh scattering diagnostic developed for study of the exhaust plume of a small hydrogen-oxygen rocket, where the velocities are in the range of 1000 to 5000 m/sec

    2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering

    Get PDF
    The use of molecular Rayleigh scattering for measurements of gas velocity and temperature is evaluated. Molecular scattering avoids problems associated with the seeding required by conventional laser anemometry and particle image velocimetry. The technique considered herein is based on the measurement of the spectrum of the scattered light. Planar imaging of Rayleigh scattering using a laser light sheet is evaluated for conditions at 30 km altitude (typical hypersonic flow conditions). The Cramer-Rao lower bounds for velocity and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light from clean flows can be analyzed to obtain temperature and one component of velocity. Experimental results are presented for planar velocity measurements in a Mach 1.3 air jet

    Laser anemometer measurements and computations in an annular cascade of high turning core turbine vanes

    Get PDF
    An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes designed for a high bypass ratio engine. These vanes were based on a redesign of the first-stage stator, of a two-stage turbine, that produced 75 degrees of flow turning. Tests were conducted on a 0.771 scale model of the engine size stator. The advanced LA fringe system was designed to employ thinner than usual laser beams resulting in a 50-micron-diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained both upstream, within, and downstream of the stator vane row at the design exit critical velocity ratio of 0.896 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible with calculations from a 3-D inviscid flow analysis. The data are presented in both graphic and tabulated form so that they may be readily used to compare against other turbomachinery computations

    Three component laser anemometer measurements in an annular cascade of core turbine vanes with contoured end wall

    Get PDF
    The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware

    Rayleigh-Brillouin scattering for high-pressure gas temperature measurements

    Get PDF
    An experiment was set up to evaluate the feasibility of using Rayleigh-Brillouin scattering as a diagnostic technique for measuring gas temperature in high pressure environments, such as the Space Shuttle Main Engine (SSME) Preburner. A high pressure furnace is used as the scattering chamber. Either nitrogen or hydrogen may be used. An argon ion laser beam is focused into the furnace. Light backscattering from the gas in the furnace is collected and analyzed with a 5-pass scanning Fabry-Perot interferometer and photon counting electronics. The multi-pass configuration provides the high frequency selectively needed to measure the Brillouin peaks in the presence of large amounts of spuriously scattered light at the laser frequency. Preliminary measurements were made at room temperature in nitrogen at pressures up to 2000 psia. The free spectral range of the interferometer and frequency separation of the Brillouin peaks are determined from measured spectra. Temperature measurements are then obtained using the simple continuum theory with low frequency values of specific heat ratio and shear viscosity. The measured temperatures are within 10 percent of the true value

    Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    Get PDF
    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream

    Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    Get PDF
    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel

    TiCl4 as a source of TiO2 particles for laser anemometry measurements in hot gas

    Get PDF
    A method of reacting TiCl4 with water saturated gaseous nitrogen (GN2) at the entrance into a high temperature gas flow is described. The TiO2 particles formed are then entrained in the gas flow and used as seed particles for making laser anemometry (LA) measurements of the flow velocity distribution in the hot gas. Scanning electron microscope photographs of the TiO2 particles are shown. Data rate of the LA processor was measured to determine the amount of TiO2 formed. The TiCl4 and mixing gas flow diagram is shown. This work was performed in an open jet burner

    Gas temperature measurements using the dual-line detection Rayleigh scattering technique

    Get PDF
    A new laser-induced Rayleigh scattering method is presented for the improved temperature diagnostics of gas flows. In the present technique, the two lines of a copper vapor laser are used to obtain the time and space resolved temperature. A single set of optics is used to form the optical probe and to collect the signal simultaneously from both the 510 nm and the 578 nm lines. The dual-line detection allows for the determination and removal of surface-scattered laser light from a Rayleigh signal thereby improving the applicability of Rayleigh scattering to near wall flows with a high degree of glare. An optical system using the dual-line detection technique is built, calibrated and tested in a hot air jet under various levels of background contamination. The results indicate that highly accurate temperature measurements are possible even when the laser-line background intensity, captured by the collecting optics, is five times that of the Rayleigh signal

    Comparison of the bidirectional reflectance distribution function of various surfaces

    Get PDF
    Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared
    corecore