5,012 research outputs found
Migration of latent fingermarks on non-porous surfaces:observation technique and nanoscale variations
Latent fingermark morphology was examined over a period of approximately two months. Variation in topography was observed with atomic force microscopy and the expansion of the fingermark occurred in the form of the development of an intermediate area surrounding the main fingermark ridge. On an example area of a fingermark on silicon, the intermediate region exists as a uniform 4nm thick deposit; on day 1 after deposition this region extends approximately 2µm from the edge of the main ridge deposit and expands to a maximum of ~ 4µm by day 23. Simultaneously the region breaks up, the integrity is compromised by day 16, and by day 61 the area resembles a series of interconnected islands, with coverage of approximately 60%. Observation of a similar immediate area and growth with time on surfaces such as Formica was possible by monitoring the mechanical characteristics of the fingermark and surfaces though phase contrast in tapping mode AFM. The presence of this area may affect fingermark development, for example affecting the gold distribution in vacuum metal deposition. Further study of time dependence and variation with donor may enable assessment of this area to be used to evaluate the age of fingermarks
Ideal Gas in a strong Gravitational field: Area dependence of Entropy
We study the thermodynamic parameters like entropy, energy etc. of a box of
gas made up of indistinguishable particles when the box is kept in various
static background spacetimes having a horizon. We compute the thermodynamic
variables using both statistical mechanics as well as by solving the
hydrodynamical equations for the system. When the box is far away from the
horizon, the entropy of the gas depends on the volume of the box except for
small corrections due to background geometry. As the box is moved closer to the
horizon with one (leading) edge of the box at about Planck length (L_p) away
from the horizon, the entropy shows an area dependence rather than a volume
dependence. More precisely, it depends on a small volume A*L_p/2 of the box,
upto an order O(L_p/K)^2 where A is the transverse area of the box and K is the
(proper) longitudinal size of the box related to the distance between leading
and trailing edge in the vertical direction (i.e in the direction of the
gravitational field). Thus the contribution to the entropy comes from only a
fraction O(L_p/K) of the matter degrees of freedom and the rest are suppressed
when the box approaches the horizon. Near the horizon all the thermodynamical
quantities behave as though the box of gas has a volume A*L_p/2 and is kept in
a Minkowski spacetime. These effects are: (i) purely kinematic in their origin
and are independent of the spacetime curvature (in the sense that Rindler
approximation of the metric near the horizon can reproduce the results) and
(ii) observer dependent. When the equilibrium temperature of the gas is taken
to be equal to the the horizon temperature, we get the familiar A/L_p^2
dependence in the expression for entropy. All these results hold in a D+1
dimensional spherically symmetric spacetime.Comment: 19 pages, added some discussion, matches published versio
Visualising the past – an evaluation of processes and sequences for fingermark recovery from old documents
This study aimed to collect data on the effectiveness of most of the fingermark visualisation reagents currently used on porous surfaces on fingermarks aged for up to 90 years, significantly extending the timescales for which such information exists. A limited subset of the variables associated with processing of old fingermarks was explored, with a focus on the use of 1,8 diazafluoren-9-one (DFO), 1,2-indandione, ninhydrin, and physical developer. These techniques were used in sequence on batches of cheques between 11 and 32 years old, and on documents dating from the 1920s and 1940s. The potential for applying a physical developer enhancement process (blue toning) as the final step in the sequence was also explored. The benefits of using processing sequences on porous items were clearly demonstrated, with all processes in the sequence adding value in terms of additional marks found on the cheques up to 32 years old. In addition, physical developer was found to be capable of developing fingermarks up to 90 years old, whereas the amino acid reagents appear less effective on documents of 70 years and older. An experimental physical developer formulation with reduced environmental impact was found to be as effective as the existing process in these experiments. Blue toning was found to visualise an additional 10-25% of marks, and its wider use after silver-based deposition processes is recommended based on the evidence from this study.Peer reviewedFinal Accepted Versio
Conduction Block in the Peripheral Nervous System in Experimental Allergic Encephalomyelitis
Experimental Allergic Encephalomyelitis (EAE) has been widely studied as a model of multiple sclerosis, a central nervous system (CNS) disease of unknown aetiology. The clinical features of both EAE and multiple sclerosis provide the only guide to the progress and severity of these diseases, and are used to assess the response to treatment. In such comparisons the clinical features of EAE are assumed to be due to lesions in the CNS, but in this disease there is also histological evidence of damage to the peripheral nervous system (1-8). However, the functional consequences of such peripheral lesions have been entirely ignored. To examine this, we have studied nerve conduction in rabbits with EAE. We report here that most of the large diameter afferent fibres are blocked in the region of the dorsal root ganglion and at the dorsal root entry zone, thus accounting for the loss of tendon jerks and also, through the severe loss of proprioceptive information, the ataxia of thse animals. We conclude that whenever clinical comparisons are made between EAE and multiple sclerosis, the pathophysiology associated with histological damage of the peripheral nervous system must be taken into account
The Pathophysiology of Acute Experimental Allergic Encephalomyelitis in the Rabbit
Clinical, histological and electrophysiological studies were performed on rabbits with acute experimental allergic encephalomyelitis (EAE). The clinical features were similar to those previously described, with the notable exception of the new findings of areflexia, respiratory slowing and hypothermia. The histological findings were also similar to those previously reported, with inflammatory demyelinating lesions both in the central and peripheral nervous system, especially the dorsal root ganglia. Electrophysiological studies performed one to nine days after the onset of neurological signs demonstrated conduction block in a high proportion of the large diameter afferents in the lumbosacral and thoracic dorsal root ganglia. Single fibre studies with spike-triggered averaging confirmed the conduction block in the dorsal root ganglia. That the conduction block was due to demyelination was indicated by slowing of conduction in large diameter fibres, normal conduction in unmyelinated fibres and the specific effects of temperature and of the potassium channel blocking agent, 4-aminopyridine. These conduction abnormalities in the peripheral nervous system, focused on the dorsal root ganglia, account for the postural disturbance, hypotonia, ataxia and areflexia in rabbits with EAE. Such conduction block is likely to mask the expression of any lesions of the central nervous system that alone could produce similar signs. The implications of these findings for the human demyelinating diseases are discussed
Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering
We investigated the low energy excitations in the parent compound NdFeAsO of
the Fe-pnictide superconductor in the eV range by a back scattering
neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed
inelastic peaks at E = 1.600 eV at T = 0.055 K on both energy
gain and energy loss sides. The inelastic peaks move gradually towards lower
energy with increasing temperature and finally merge with the elastic peak at
about 6 K. We interpret the inelastic peaks to be due to the transition between
hyperfine-split nuclear level of the Nd and Nd isotopes with
spin . The hyperfine field is produced by the ordering of the
electronic magnetic moment of Nd at low temperature and thus the present
investigation gives direct evidence of the ordering of the Nd magnetic
sublattice of NdFeAsO at low temperature
Recommended from our members
Alternative Compliance Program: 10 CFR Part 490
Presentation explains the Alternative Compliance option under the U.S. Department of Energy's State and Alternative Fuel Provider program
A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells
- …