48 research outputs found

    Final state effects on superfluid 4^{\bf 4}He in the deep inelastic regime

    Get PDF
    A study of Final State Effects (FSE) on the dynamic structure function of superfluid 4^4He in the Gersch--Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distribution and the semidiagonal two--body density matrix. The influence of these ground state quantities on the FSE is analyzed. A variational form of ρ2\rho_2 is used, even though simpler forms turn out to give accurate results if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best agreement with experiment being obtained with n0=0.082n_0=0.082. Sum rules of the FSE broadening function are also derived and commented. Finally, it is shown that Gersch--Rodriguez theory produces results as accurate as those coming from other more recent FSE theories.Comment: 20 pages, RevTex 3.0, 11 figures available upon request, to be appear in Phys. Rev.

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Replacing Synperonic® N in the physical developer fingermark visualisation process: Pseudo-operational trial and parameter studies.

    No full text
    A reformulated physical developer (PD) solution has been devised to replace the use of Synperonic® N for environmental reasons. The performance of the replacement solution has proved promising in laboratory trials using planted fingermarks [1] however; this may not always represent how a reagent works on real world samples. This paper therefore explores the effectiveness of the decaethylene glycol monododecyl ether (DGME)-based PD formulation through a pseudo-operational trial. A range of naturally handled, porous substrates were processed, which totalled over 600 samples that had been previously treated with amino acid reagents (1,2-indandione (IND) or 1,8-diazafluoren-9-one (DFO) and ninhydrin). The trial was representative of the operational use of PD at the end of a processing sequence for porous exhibits. The results from the trial establish that DGME is an effective replacement detergent for Synperonic® N in PD solutions and demonstrated the added benefit of using PD as a sequential treatment. Planted mark studies to assess the parameters of the DGME-based PD formulation are also included in this paper. These studies explored the preparation, processing and storage temperature required for the solution as well as the shelf life. The effectiveness of DGME-based PD on items that have been previously wetted was also investigated. These studies show the formulation is suitable for use in an operational laboratory and is therefore an effective replacement formulation for the Synperonic® N-based PD. [Abstract copyright: Copyright © 2021. Published by Elsevier B.V.
    corecore