3,938 research outputs found
Stationary states of an electron in periodic structures in a constant uniform electrical field
On the basis of the transfer matrix technique an analytical method to
investigate the stationary states, for an electron in one-dimensional periodic
structures in an external electrical field, displaying the symmetry of the
problem is developed. These solutions are shown to be current-carrying. It is
also shown that the electron spectrum for infinite structures is continuous,
and the corresponding wave functions do not satisfy the symmetry condition of
the problem.Comment: 10 pages (Latex), no figures, in the revised variant some mistakes in
the English text are corrected and also the first two paragraphs in the
Conclusion are refined (Siberian physical-technical institute at the Tomsk
state university, Tomsk, Russia
Precision Measurement of the n-3He Incoherent Scattering Length Using Neutron Interferometry
We report the first measurement of the low-energy neutron-He incoherent
scattering length using neutron interferometry: fm. This is in good agreement with a
recent calculation using the AV18+3N potential. The neutron-He scattering
lengths are important for testing and developing nuclear potential models that
include three nucleon forces, effective field theories for few-body nuclear
systems, and neutron scattering measurements of quantum excitations in liquid
helium. This work demonstrates the first use of a polarized nuclear target in a
neutron interferometer.Comment: 4 figure
Crystal structure and high-field magnetism of La2CuO4
Neutron diffraction was used to determine the crystal structure and magnetic
ordering pattern of a La2CuO4 single crystal, with and without applied magnetic
field. A previously unreported, subtle monoclinic distortion of the crystal
structure away from the orthorhombic space group Bmab was detected. The
distortion is also present in lightly Sr-doped crystals. A refinement of the
crystal structure shows that the deviation from orthorhombic symmetry is
predominantly determined by displacements of the apical oxygen atoms. An
in-plane magnetic field is observed to drive a continuous reorientation of the
copper spins from the orthorhombic b-axis to the c-axis, directly confirming
predictions based on prior magnetoresistance and Raman scattering experiments.
A spin-flop transition induced by a c-axis oriented field previously reported
for non-stoichiometric La2CuO4 is also observed, but the transition field (11.5
T) is significantly larger than that in the previous work
Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race
Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion
Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet
Ruthenium compounds play prominent roles in materials research ranging from
oxide electronics to catalysis, and serve as a platform for fundamental
concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and
solid-state analogues of the Higgs mode in particle physics. However, basic
questions about the electronic structure of ruthenates remain unanswered,
because several key parameters (including the Hund's-rule, spin-orbit, and
exchange interactions) are comparable in magnitude, and their interplay is
poorly understood - partly due to difficulties in synthesizing sizable single
crystals for spectroscopic experiments. Here we introduce a resonant inelastic
x-ray scattering (RIXS) technique capable of probing collective modes in
microcrystals of -electron materials. We present a comprehensive set of
data on spin waves and spin-state transitions in the honeycomb antiferromagnet
SrRuO, which possesses an unusually high N\'eel temperature. The
new RIXS method provides fresh insight into the unconventional magnetism of
SrRuO, and enables momentum-resolved spectroscopy of a large class
of transition-metal compounds.Comment: The original submitted version of the published manuscript.
https://www.nature.com/articles/s41563-019-0327-
Dynamical Semigroup Description of Coherent and Incoherent Particle-Matter Interaction
The meaning of statistical experiments with single microsystems in quantum
mechanics is discussed and a general model in the framework of non-relativistic
quantum field theory is proposed, to describe both coherent and incoherent
interaction of a single microsystem with matter. Compactly developing the
calculations with superoperators, it is shown that the introduction of a time
scale, linked to irreversibility of the reduced dynamics, directly leads to a
dynamical semigroup expressed in terms of quantities typical of scattering
theory. Its generator consists of two terms, the first linked to a coherent
wavelike behaviour, the second related to an interaction having a measuring
character, possibly connected to events the microsystem produces propagating
inside matter. In case these events breed a measurement, an explicit
realization of some concepts of modern quantum mechanics ("effects" and
"operations") arises. The relevance of this description to a recent debate
questioning the validity of ordinary quantum mechanics to account for such
experimental situations as, e.g., neutron-interferometry, is briefly discussed.Comment: 22 pages, latex, no figure
Space-Time Approach to Scattering from Many Body Systems
We present scattering from many body systems in a new light. In place of the
usual van Hove treatment, (applicable to a wide range of scattering processes
using both photons and massive particles) based on plane waves, we calculate
the scattering amplitude as a space-time integral over the scattering sample
for an incident wave characterized by its correlation function which results
from the shaping of the wave field by the apparatus. Instrument resolution
effects - seen as due to the loss of correlation caused by the path differences
in the different arms of the instrument are automatically included and analytic
forms of the resolution function for different instruments are obtained. The
intersection of the moving correlation volumes (those regions where the
correlation functions are significant) associated with the different elements
of the apparatus determines the maximum correlation lengths (times) that can be
observed in a sample, and hence, the momentum (energy) resolution of the
measurement. This geometrical picture of moving correlation volumes derived by
our technique shows how the interaction of the scatterer with the wave field
shaped by the apparatus proceeds in space and time. Matching of the correlation
volumes so as to maximize the intersection region yields a transparent,
graphical method of instrument design. PACS: 03.65.Nk, 3.80 +r, 03.75, 61.12.BComment: Latex document with 6 fig
Slow Light Propagation in a Thin Optical Fiber via Electromagnetically Induced Transparency
We propose a novel configuration that utilizes electromagnetically induced
transparency (EIT) to tailor a fiber mode propagating inside a thin optical
fiber and coherently control its dispersion properties to drastically reduce
the group velocity of the fiber mode. The key to this proposal is: the
evanescent-like field of the thin fiber strongly couples with the surrounding
active medium, so that the EIT condition is met by the medium. We show how the
properties of the fiber mode is modified due to the EIT medium, both
numerically and analytically. We demonstrate that the group velocity of the new
modified fiber mode can be drastically reduced (approximately 44 m/sec) using
the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal
as the EIT medium.Comment: 10 pages in two column RevTex4, 6 Figure
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
- …
