6 research outputs found

    Central role of c-Myc during malignant conversion in human hepatocarcinogenesis

    No full text
    Hepatocarcinogenesis is a multistage process in which precursor lesions progress into early hepatocellular carcinomas (eHCC) by sequential accumulation of multiple genetic and epigenetic alterations. To decode the molecular events during early stages of liver carcinogenesis, we performed gene expression profiling on cirrhotic (regenerative) and dysplastic nodules (DN), as well as eHCC. Although considerable heterogeneity was observed at the regenerative and dysplastic stages, overall, 460 differentially expressed genes were detected between DN and eHCC. Functional analysis of the significant gene set identified the MYC oncogene as a plausible driver gene for malignant conversion of the DNs. In addition, gene set enrichment analysis revealed global activation of the MYC up-regulated gene set in eHCC versus dysplasia. Presence of the MYC signature significantly correlated with increased expression of CSN5, as well as with higher overall transcription rate of genes located in the 8q chromosome region. Furthermore, a classifier constructed from MYC target genes could robustly discriminate eHCC from high-grade and low-grade DNs. In conclusion, our study identified unique expression patterns associated with the transition of high-grade DNs into eHCC and showed that activation of the MYC transcription signature is strongly associated with the malignant conversion of preneoplastic liver lesions

    Biodiversity inventories in high gear:DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    No full text
    Abstract Background: Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information: The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies — a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory — it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011–2020
    corecore