454 research outputs found

    Phase Conjugation of a Quantum-Degenerate Atomic Fermi Beam

    Full text link
    We discuss the possibility of phase-conjugation of an atomic Fermi field via nonlinear wave mixing in an ultracold gas. It is shown that for a beam of fermions incident on an atomic phase-conjugate mirror, a time reversed backward propagating fermionic beam is generated similar to the case in nonlinear optics. By adopting an operational definition of the phase, we show that it is possible to infer the presence of the phase-conjugate field by the loss of the interference pattern in an atomic interferometer

    The imprint of the interaction between dark sectors in galaxy clusters

    Full text link
    Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium while interacting. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark, leading to the energy non-conservation problem in the collapsing system We examine the cluster number counts dependence on the interaction between dark sectors. Furthermore, we analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.Comment: revised version. New treatment has been provided on studying the structure formation in the spherical collapsing system where DE does not cluster together with DM. Accepted for publication in JCA

    General Non-minimal Kinetic coupling to gravity

    Full text link
    We study a new model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. A wide variety of scalar fields and potentials giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.Comment: 25 pages, 3 figures; figure added, references adde

    Spin current and shot noise from a quantum dot coupled to a quantized cavity field

    Full text link
    We examine the spin current and the associated shot noise generated in a quantum dot connected to normal leads with zero bias voltage across the dot. The spin current is generated by spin flip transitions induced by a quantized electromagnetic field inside a cavity with one of the Zeeman states lying below the Fermi level of the leads and the other above. In the limit of strong Coulomb blockade, this model is analogous to the Jaynes-Cummings model in quantum optics. We also calculate the photon current and photon current shot noise resulting from photons leaking out of the cavity. We show that the photon current is equal to the spin current and that the spin current can be significantly larger than for the case of a classical driving field as a result of cavity losses. In addition to this, the frequency dependent spin (photon) current shot noise show dips (peaks) that are a result of the discrete nature of photons

    The imprint of the interaction between dark sectors in galaxy clusters

    Full text link
    Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium while interacting. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark, leading to the energy non-conservation problem in the collapsing system We examine the cluster number counts dependence on the interaction between dark sectors. Furthermore, we analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.Comment: revised version. New treatment has been provided on studying the structure formation in the spherical collapsing system where DE does not cluster together with DM. Accepted for publication in JCA

    Transient cosmic acceleration from interacting fluids

    Full text link
    Recent investigations seem to favor a cosmological dynamics according to which the accelerated expansion of the Universe may have already peaked and is now slowing down again \cite{sastaro}. As a consequence, the cosmic acceleration may be a transient phenomenon. We investigate a toy model that reproduces such a background behavior as the result of a time-dependent coupling in the dark sector which implies a cancelation of the "bare" cosmological constant. With the help of a statistical analysis of Supernova Type Ia (SNIa) data we demonstrate that for a certain parameter combination a transient accelerating phase emerges as a pure interaction effect.Comment: Latex file, 23 pages, 21 figures in eps format. Discussion enlarged, new subsection on scalar field dynamics included, accepted for publication in JCAP

    Testing homogeneity with galaxy number counts : light-cone metric and general low-redshift expansion for a central observer in a matter dominated isotropic universe without cosmological constant

    Full text link
    As an alternative to dark energy it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to test this hypothesis we calculate the general analytical formula to fifth order for the redshift spherical shell mass. Using the same analytical method we write the metric in the light-cone by introducing a gauge invariant quantity G(z)G(z) which together with the luminosity distance DL(z)D_L(z) completely determine the light-cone geometry of a LTB model.Comment: 13 page

    A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

    Full text link
    We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.Comment: 12 pages, 6 figure

    Sagnac Rotational Phase Shifts in a Mesoscopic Electron Interferometer with Spin-Orbit Interactions

    Full text link
    The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern proportional to the rotation rate. Here we analyze for the first time the Sagnac effect in a mesoscopic semiconductor electron interferometer. We include in our analysis Rashba spin-orbit interactions in the ring. Our results indicate that spin-orbit interactions increase the rotation induced phase shift. We discuss the potential experimental observability of the Sagnac phase shift in such mesoscopic systems

    Effects of dark sectors' mutual interaction on the growth of structures

    Full text link
    We present a general formalism to study the growth of dark matter perturbations when dark energy perturbations and interactions between dark sectors are present. We show that dynamical stability of the growth of structure depends on the type of coupling between dark sectors. By taking the appropriate coupling to ensure the stable growth of structure, we observe that the effect of the dark sectors' interaction overwhelms that of dark energy perturbation on the growth function of dark matter perturbation. Due to the influence of the interaction, the growth index can differ from the value without interaction by an amount within the observational sensibility, which provides a possibility to disclose the interaction between dark sectors through future observations on the growth of large structure.Comment: 15 pages, 4 figures, revised version, to appear in JCA
    corecore