15 research outputs found

    The vertical distribution of fish on two offshore oil platforms

    Get PDF
    Knowledge of platform ecology is necessary to best inform decommissioning practice. Remotely operated vehicle (ROV) video is often collected during standard industry operations and may provide insight into the marine life associating with offshore platforms, however, the utility of this video for ecological assessments remains unclear. Archival ROV video surveys at the Wandoo oil platforms on Australia’s North West Shelf was evaluated for its utility, with only 4.9% of imagery usable for standardised ecological studies. Based on the subset of usable ROV video, the influence of depth and structural complexity on attributes of the fish assemblage on the Wandoo oil platforms was examined. Vertical ROV transects on three vertical shafts on the Wandoo platforms were stratified into 10 m depth strata from 0 to 50 m, with 111 fish taxa from 25 families identified and counted across all depth strata. At both platforms, taxonomic richness and abundance was significantly highest in shallow regions and declined with depth. Small reef fish were predominantly associated with structurally complex habitat in shallow regions (<22 m), whilst large demersal species dominated below 32 m. Future decommissioning policy in Australia should consider the vertical fish distributions and the importance of shallow sections of platforms. Finally, the dearth of usable video was due to the haphazard method of collection and it is recommended that future surveys should be conducted according to scientific standards to ensure greater utility of the video for both industry use and scientific research

    Panmicrobial Oligonucleotide Array for Diagnosis of Infectious Diseases

    Get PDF
    To facilitate rapid, unbiased, differential diagnosis of infectious diseases, we designed GreeneChipPm, a panmicrobial microarray comprising 29,455 sixty-mer oligonucleotide probes for vertebrate viruses, bacteria, fungi, and parasites. Methods for nucleic acid preparation, random primed PCR amplification, and labeling were optimized to allow the sensitivity required for application with nucleic acid extracted from clinical materials and cultured isolates. Analysis of nasopharyngeal aspirates, blood, urine, and tissue from persons with various infectious diseases confirmed the presence of viruses and bacteria identified by other methods, and implicated Plasmodium falciparum in an unexplained fatal case of hemorrhagic feverlike disease during the Marburg hemorrhagic fever outbreak in Angola in 2004–2005

    To what extent can decommissioning options for marine artificial structures move us toward environmental targets?

    Get PDF
    Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society

    Developing expert scientific consensus on the environmental and societal effects of marine artificial structures prior to decommissioning

    Get PDF
    This work was supported by the UK Natural Environment Research Council and the INSITE programme [INSITE SYNTHESIS project, grant number NE/W009889/1].Thousands of artificial (‘human-made’) structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.Publisher PDFPeer reviewe

    Developing expert scientific consensus on the environmental and societal effects of marine artificial structures prior to decommissioning

    Get PDF
    Thousands of artificial (‘human-made’) structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level

    Meso-zooplankton movement through the newly constructed Mfolozi channel into and out of the St Lucia Estuary, South Africa

    No full text
    The historical canalization of the Mfolozi River resulted in the St Lucia Estuary losing its main freshwater source. This, combined with the recent drought, led to low water levels, hypersaline conditions and dramatic losses in biodiversity. The excavation of a beach spillway between the estuary and the Mfolozi River mouth in 2012, combined with the commencement of a wet phase in the preceding year, has alleviated the freshwater deprivation crisis. This study compares the meso-zooplankton composition within the channel on both flood and ebb tides, providing a preliminary understanding of the role of the Mfolozi channel in the migration and recruitment of organisms. Abundance was higher on ebb tides, while species richness was higher on flood tides. A total of 53 zooplankton taxa were recorded in the channel. Of these, one had never been recorded in St Lucia before, namely the gastropod Pterotrachea cf. hippocampus. Additionally, the ctenophore Pleurobrachia cf. pileus and the mysid Gastrosaccus gordonae were again recorded for the first time since the late 1970s. Results show that the beach spillway has facilitated recruitment into St Lucia from the ocean and the Mfolozi River. Further research is needed to ascertain what effect this recruitment has on long-term zooplankton community structure.Key words: iSimangaliso Wetland Park, relinkage, Mfolozi channel, ebb and flood tides, zooplankton community structure

    Plant selection and grazing activity of the invasive snail Theba pisana in coastal Algoa Bay, South Africa

    No full text
    The land snail Theba pisana is a coastal species native to the Mediterranean but has been introduced to regions all over the world, including South Africa and Australia, where it is considered a pest. This study examines the diet of T. pisana and its preference for certain dune plants in the Cape Recife Nature Reserve of Algoa Bay in the Eastern Cape, South Africa. Field observations identified plants being fed on by T. pisana, accounting for almost half of the dune plant species present in the study area. Five plant species, on which snails were found frequently and in high abundance, were selected for feeding preference experiments. Laboratory experiments and field observations indicate that T. pisana feed preferentially on Tetragonia decumbens over Osteospermum moniliferum, Osyris compressa and Cynanchum obtusifolium. It is clear that while T. pisana is reported to have a generalist diet, consuming a range of plant species commonly found in South African dune vegetation, it also exhibits a definite preference for T. decumbens. The reasons for this preference need to be investigated further.Keywords: alien gastropod, coastal vegetation, feeding rate, selective food preferenc
    corecore