30 research outputs found

    Low-density lipoprotein aggregation predicts adverse cardiovascular events in peripheral artery disease

    Get PDF
    Background and aims: Peripheral artery disease (PAD) is a systemic manifestation of atherosclerosis that is associated with a high risk of major adverse cardiovascular events (MACE). LDL aggregation contributes to atherosclerotic plaque progression and may contribute to plaque instability. We aimed to determine if LDL aggregation is associated with MACE in patients with PAD undergoing lower extremity revascularization (LER). Methods: Two hundred thirty-nine patients with PAD undergoing LER had blood collected at baseline and were followed prospectively for MACE (myocardial infarction, stroke, cardiovascular death) for one year. Nineteen age, sex and LDL-C-matched control subjects without cardiovascular disease also had blood drawn. Subject LDL was exposed to sphingomyelinase and LDL aggregate size measured via dynamic light scattering. Results: Mean age was 72.3 10.9 years, 32.6% were female, and LDL-cholesterol was 68 +/- 25 mg/dL. LDL aggregation was inversely associated with triglycerides, but not associated with demographics, LDL-cholesterol or other risk factors. Maximal LDL aggregation occurred significantly earlier in subjects with PAD than in control subjects. 15.9% of subjects experienced MACE over one year. The 1st tertile (shortest time to maximal aggregation) exhibited significantly higher MACE (25% vs. 12.5% in tertile 2 and 10.1% in tertile 3, p = 0.012). After multivariable adjustment for demographics and CVD risk factors, the hazard ratio for MACE in the 1st tertile was 4.57 (95% CI 1.60-13.01; p = 0.004) compared to tertile 3. Inclusion of LDL aggregation in the Framingham Heart Study risk calculator for recurrent coronary heart disease events improved the c-index from 0.57 to 0.63 (p = 0.01). Conclusions: We show that in the setting of very well controlled LDL-cholesterol, patients with PAD with the most rapid LDL aggregation had a significantly elevated MACE risk following LER even after multivariable adjustment. This measure further improved the classification specificity of an established risk prediction tool. Our findings support broader investigation of this assay for risk stratification in patients with atherosclerotic CVD.Peer reviewe

    Severe obesity and bariatric surgery alter the platelet mRNA profile

    No full text
    © 2018, © 2018 Taylor & Francis Group, LLC. Mechanisms explaining the relationship between obesity and cardiovascular disease (CVD) are needed. Despite growing recognition of the importance of the anucleate platelet transcriptome, low levels of RNA in platelets make assessment difficult. We sought to perform unbiased platelet RNA profiling in obesity by performing a prospective study of severe obesity and weight loss via bariatric surgery on platelet characteristics and mRNA profile in 26 pre-menopausal, non-diabetic women (31.6 ± 8.4 years; BMI 43.0 ± 6.5 kg/m2) who underwent sleeve gastrectomy. Totally, 10 women of similar age with normal BMI served as controls. Platelet activation via flow cytometry was assessed before and after surgery. RNA-sequencing (RNAseq) was performed on platelet isolates from a subset of 13 subjects (eight obese women and five normal-BMI subjects). Platelet count, size, and age did not differ between control and obese women. However, platelet surface P-selectin and CD40 were higher in obesity. RNAseq demonstrated 629 differentially abundant transcripts in obesity. Notably, S100A9 and AGER, established markers of cardiovascular risk, were two of the most highly upregulated transcripts (each \u3e 2.5 fold). At 6 months post-operatively, subjects lost 26.1 ± 5.8% body weight and inducible platelet P-selectin expression was reduced. Expression of 170 transcripts was affected by surgery, but only a small fraction (46/629) were genes found altered in obesity. We demonstrate that obesity is associated with an altered platelet transcriptome and increased platelet activation, which is partly attenuated by bariatric surgery. These observations suggest that platelets may contribute to increased cardiovascular risk in obesity through a variety of mechanisms

    Platelet inhibition by low-dose aspirin is not influenced by body mass or weight

    No full text
    Aspirin’s clinical efficacy may be influenced by body weight and mass. Although inadequate platelet inhibition by aspirin is suggested as responsible, evidence for this in non-diabetic patients is sparse. We investigated the influence of body weight and mass on aspirin’s inhibition of platelet aggregation in healthy adults without diabetes. Cohort one (NYU, n = 84) had light transmission aggregometry (LTA) of platelet-rich plasma to submaximal adenosine diphosphate (ADP) and arachidonic acid (AA) before and following 1 week of daily 81 mg non-enteric coated aspirin. Subjects in the validation cohort (Duke, n = 66) were randomized to 81 mg or 325 mg non-enteric coated aspirin for 4 weeks, immediately followed by 4 weeks of the other dose, with LTA to submaximal collagen, ADP, and AA before and after each dosage period. Body mass index (BMI) range was 18.0–57.5 kg/m2 and 25% were obese. Inhibition of platelet aggregation was similar irrespective of BMI, body weight and aspirin dose. There was no correlation between platelet aggregation before or after aspirin with BMI or body weight. Our data demonstrate that aspirin produces potent inhibition of direct and indirect COX1-mediated platelet aggregation in healthy adults without diabetes regardless of body weight or mass – suggesting that other mechanisms explain lower preventive efficacy of low-dose aspirin with increasing body weight/mass

    Body mass index and peripheral artery disease

    No full text
    © 2019 Elsevier B.V. Background and aims: An independent association of body mass index (BMI) with atherosclerotic cardiovascular disease is somewhat controversial and may differ by vascular bed. Sex-specific risk factors for atherosclerosis may further modify these associations. Obesity and peripheral artery disease (PAD) are both more prevalent in women. We sought to determine the association between PAD and BMI using a very large population-based study. Methods: Self-referred individuals at \u3e20,000 US sites completed medical questionnaires including height and weight, and were evaluated by screening ankle brachial indices (ABI) for PAD (ABI\u3c0.9). Results: Among 3,250,350 individuals, the mean age was 63.1 ± 10.5 years and 65.5% were women. The mean BMI was 27.7 ± 5.8 kg/m2. 27.8% of participants were obese (BMI ≥30 kg/m2) – 27.6% females, 28.1% males. Overweight individuals (BMI 25–29.9 kg/m2) exhibited the lowest prevalence of PAD. There was a J-shaped association of BMI with prevalent PAD. After adjustment for age and cardiovascular risk factors, underweight was associated with similarly increased odds of PAD (1.72 vs. 1.39, women and men, respectively). The association of obesity with PAD was predominant in women, with only a slight association of increasing BMI with PAD in men (OR = 2.98 vs. 1.37 for BMI ≥40 kg/m2). Conclusions: Our study suggests that increasing BMI is a robust independent risk factor for PAD only in women. This observation requires validation, but highlights the need for further research on sex-specific risk and mechanisms of atherosclerosis

    Lipoprotein insulin resistance score in nondiabetic patients with obesity after bariatric surgery

    No full text
    © 2020 American Society for Bariatric Surgery Background: Lipoprotein insulin resistance (LPIR) score is a composite biomarker representative of atherogenic dyslipidemia characteristic of early insulin resistance. It is elevated in obesity and may provide information not captured in glycosylated hemoglobin and homeostatic model assessment for insulin resistance. While bariatric surgery reduces diabetes incidence and resolves metabolic syndrome, the effect of bariatric surgery on LPIR is untested. Objectives: We sought to assess the effects of Roux-en-Y gastric bypass and sleeve gastrectomy on LPIR in nondiabetic women with obesity. Setting: Nonsmoking, nondiabetic, premenopausal Hispanic women, age ≥18 years, undergoing Roux-en-Y gastric bypass or sleeve gastrectomy at Bellevue Hospital were recruited for a prospective observational study. Methods: Anthropometric measures and blood sampling were performed preoperatively and at 6 and 12 months postoperatively. LPIR was measured by nuclear magnetic resonance spectroscopy. Results: Among 53 women (Roux-en-Y gastric bypass, n = 22; sleeve gastrectomy, n = 31), mean age was 32 ± 7 years and body mass index 44.1 ± 6.4 kg/m2. LPIR was reduced by 35 ± 4% and 46 ± 4% at 6 and 12 months after surgery, respectively, with no difference by procedure. Twenty-seven of 53 patients met International Diabetes Federation criteria for metabolic syndrome preoperatively and had concomitant higher homeostatic model assessment for insulin resistance, glycosylated hemoglobin, nonhigh-density lipoprotein-cholesterol and LPIR. Twenty-five of 27 patients experienced resolution of metabolic syndrome postoperatively. Concordantly, the preoperative differences in homeostatic model assessment for insulin resistance, glycosylated hemoglobin, and nonhigh-density lipoprotein-cholesterol between those with and without metabolic syndrome resolved at 6 and 12 months. In contrast, patients with metabolic syndrome preoperatively exhibited greater LPIR scores at 6 and 12 months postoperatively. Conclusion: This is the first study to demonstrate improvement in insulin resistance, as measured by LPIR, after bariatric surgery with no difference by procedure. This measure, but not traditional markers, was persistently higher in patients with a preoperative metabolic syndrome diagnosis, despite resolution of the condition
    corecore