120 research outputs found

    A Nutrient Formulation Affects Developmental Myelination in Term Infants: A Randomized Clinical Trial

    Get PDF
    Background and Objectives: Observational studies suggest differences between breast-fed and formula-fed infants in developmental myelination, a key brain process for learning. The study aims to investigate the efficacy of a blend of docosahexaenoic acid (DHA), arachidonic acid (ARA), iron, vitamin B12, folic acid, and sphingomyelin (SM) from a uniquely processed whey protein concentrate enriched in alpha-lactalbumin and phospholipids compared with a control formulation on myelination, cognitive, and behavioral development in the first 6 months of life. Methods: These are 6-month results from an ongoing two-center, randomized controlled trial with a 12-month intervention period (completed for all participants). In this study, full term, neurotypical infants of both sexes (N = 81) were randomized into investigational (N = 42) or control groups (N = 39). In addition, non-randomized breast-fed children (N = 108) serve as a natural reference group. Main outcomes are myelination (MRI), cognitive (Bayley Scales of Infant and Toddler Development, 3rd edition [Bayley-III]), social-emotional development (Ages and Stages Questionnaires: Social-Emotional, 2nd edition [ASQ:SE-2]), sleep (Brief Infant Sleep Questionnaire [BISQ]), and safety (growth and adverse events [AEs]). Results: The full analyses set comprises N = 66 infants. Significant differences in myelin structure, volume, and rate of myelination were observed in favor of the investigational myelin blend at 3 and 6 months of life. Effects were demonstrated for whole brain myelin and for cerebellar, parietal, occipital, and temporal regions, known to be functionally involved in sensory, motor, and language skills. No statistically significant differences were found for early behavior and cognition scores. Conclusions: This is the first study demonstrating the efficacy of a myelin nutrient blend in well-nourished, term infants on developmental myelination, which may be foundational for later cognitive and learning outcomes.publishedVersio

    Effects of Delayed Cord Clamping on 4-Month Ferritin Levels, Brain Myelin Content, and Neurodevelopment: A Randomized Controlled Trial

    Get PDF
    Objective To evaluate whether placental transfusion influences brain myelination at 4 months of age. Study design A partially blinded, randomized controlled trial was conducted at a level III maternity hospital in the US. Seventy-three healthy term pregnant women and their singleton fetuses were randomized to either delayed umbilical cord clamping (DCC, \u3e5 minutes) or immediate clamping (ICC, \u3c20 \u3eseconds). At 4 months of age, blood was drawn for ferritin levels. Neurodevelopmental testing (Mullen Scales of Early Learning) was administered, and brain myelin content was measured with magnetic resonance imaging. Correlations between myelin content and ferritin levels and group-wise DCC vs ICC brain myelin content were completed. Results In the DCC and ICC groups, clamping time was 172 ± 188 seconds vs 28 ± 76 seconds (P \u3c .002), respectively; the 48-hour hematocrit was 57.6% vs 53.1% (P \u3c .01). At 4 months, infants with DCC had significantly greater ferritin levels (96.4 vs 65.3 ng/dL, P = .03). There was a positive relationship between ferritin and myelin content. Infants randomized to the DCC group had greater myelin content in the internal capsule and other early maturing brain regions associated with motor, visual, and sensory processing/function. No differences were seen between groups in the Mullen testing. Conclusion At 4 months, infants born at term receiving DCC had greater ferritin levels and increased brain myelin in areas important for early life functional development. Endowment of iron-rich red blood cells obtained through DCC may offer a longitudinal advantage for early white matter development

    Gut-resident microorganisms and their genes are associated with cognition and neuroanatomy in children

    Get PDF
    Emerging evidence implicates gut microbial metabolism in neurodevelopmental disorders, but its influence on typical neurodevelopment has not been explored in detail. We investigated the relationship between the microbiome and neuroanatomy and cognition of 381 healthy children, demonstrating that differences in microbial taxa and genes are associated with overall cognitive function and the size of brain regions. Using a combination of statistical and machine learning models, we showed that species including Alistipes obesi, Blautia wexlerae, and Ruminococcus gnavus were enriched or depleted in children with higher cognitive function scores. Microbial metabolism of short-chain fatty acids was also associated with cognitive function. In addition, machine models were able to predict the volume of brain regions from microbial profiles, and taxa that were important in predicting cognitive function were also important for predicting individual brain regions and specific subscales of cognitive function. These findings provide potential biomarkers of neurocognitive development and may enable development of targets for early detection and intervention.publishedVersio

    Parent-reported child appetite moderates relationships between child genetic obesity risk and parental feeding practices

    Get PDF
    BackgroundFood parenting practices are associated with child weight. Such associations may reflect the effects of parents' practices on children's food intake and weight. However, longitudinal, qualitative, and behavioral genetic evidence suggests these associations could, in some cases, reflect parents' response to children's genetic risk for obesity, an instance of gene–environment correlation. We tested for gene–environment correlations across multiple domains of food parenting practices and explored the role of parent-reported child appetite in these relationships.Materials and methodsData on relevant variables were available for N = 197 parent–child dyads (7.54 ± 2.67 years; 44.4% girls) participating in RESONANCE, an ongoing pediatric cohort study. Children's body mass index (BMI) polygenic risk score (PRS) were derived based on adult GWAS data. Parents reported on their feeding practices (Comprehensive Feeding Practices Questionnaire) and their child's eating behavior (Child Eating Behavior Questionnaire). Moderation effects of child eating behaviors on associations between child BMI PRS and parental feeding practices were examined, adjusting for relevant covariates.ResultsOf the 12 parental feeding practices, 2 were associated with child BMI PRS, namely, restriction for weight control (β = 0.182, p = 0.011) and teaching about nutrition (β = −0.217, p = 0.003). Moderation analyses demonstrated that when children had high genetic obesity risk and showed moderate/high (vs. low) food responsiveness, parents were more likely to restrict food intake to control weight.ConclusionOur results indicate that parents may adjust their feeding practices in response to a child's genetic propensity toward higher or lower bodyweight, and the adoption of food restriction to control weight may depend on parental perceptions of the child's appetite. Research using prospective data on child weight and appetite and food parenting from infancy is needed to further investigate how gene–environment relationships evolve through development
    • …
    corecore